
%Versus: A Framework for Content-Based File Comparison %Luigi Marini; Smruti Padhy

Versus: A Framework for Content-Based
File Comparison
Versus is a framework for content-based file comparison. The primary goals of the Versus framework
are to support comparison of digital objects and comparisons of file containers with multiple types of
digital objects contained in them. The framework tries to accomplish these goals by providing
facilities for bringing together metrics and algorithms for content-based comparison of files of any
format and by providing prototypes of scalable and extensible environments to execute such
comparisons.

The framework provides several ways in which it supports comparison of files: an application
programming interfaces (API), basic implementations of such APIs, a set of web services to support
remote submission and execution of comparisons, and a variety of clients for the end-user such as a
command-line interface (CLI), a simple desktop GUI based application and a full fledged web
application. It also provides support for indexing service for content-based retrieval and descision
support service.

This document is organized in three major parts. Core Package And API (Part I) describes the core
package of the Versus framework, with an overview of the building blocks present in the application
programming interface as well as a few facilities to make working with the metrics a little easier such
as engines and registries. Part II describes versus service REST API and how to interact with versus
service using various clients/interfaces. We name it as User's Manual. Part III describes the details to
add new implementations for the Java APIs to the versus framework. We call it as Developer's
manual.

This document is written with primarily four types of audiences in mind:

an user that uses the versus service web interface or versus-service REST endpoints. A user
can be a researcher or archivist who just wants to use the versus-service.
an administrator that deploys the versus-service and configure the versus.properties file
a developer that implements the Java API of versus-core and add new methods
an advanced developer that modifies the framework design and creates new Java APIs and
REST APIs

Part I and Part II is for all types of audiences while Part III specifically written for developers and
advanced developers.

Core Package And API
The Versus core package includes the Java APIs, a multithreaded engines, a registry and a
command line interface. We will also show an example of versus desktop GUI application build on
versus-core package.

Application Programming Interface
The Application Programming Interface (API) is the set of specifications and rules that method
provides can follow to integrate within the overall framework. Versus’ API is written in Java due to the
popularity of the language, the portable abstraction layer over the operating system provided by the
Java Virtual Machine (JVM) and the good performance of the JVM.

The Versus API provides simple interfaces that a developer can write against to add new methods to
the framework. By writing against such interfaces, researchers can contribute new methods to the
Versus ecosystem. This promotes reuse of new and existing methods. Also if the Versus APIs need
to be changed to incorporate new design, the developers responsible to do so provides new APIs
and will be part of the versus-core.

There are four main components that make up the Versus Java API. They can be viewed together as
one linear workflow where each component feeds into the next, starting at the raw files and ending
with a similarity value. We describe each one in turn.

Adapters

Adapters encapsulate the code used to load the raw information from the input files. The information
could be the raw bytes from any file, pixel values from images, text from documents, sound waves
from audio files. Adapters take care of understanding the different underlying formats, abstracting
such formats and providing the extractors with file type agnostic versions of the content of the file.

Feature Extractors

Extractors provide code needed to extract specific feature representations from the elementary
content of the file. The raw information stored in a file might be too large or redundant. Feature
extraction (some times called feature selection) is a form of dimensionality reduction to help alleviate
the effect of curse of dimensionality by shrinking the original content to a more manageable set
relevant to specific comparison methods.

Feature Descriptors

Feature descriptors encapsulate ways of representing the original digital content in more
manageable ways to avoid the curse of dimensionality typical of digital files. Each feature
representation holds only the attributes relevant for a particular comparison method.

Comparison Measures

Comparison measures encapsulate the algorithms in charge of establishing how similar or dissimilar
two files are. Given two feature representations of two digital. objects, a comparison measure returns
a proximity value representing how similar or dissimilar two digital objects are.

Proximity

Proximity represents how similar or dissimilar two digital objects are. These can be one or more
numbers along with descriptions of what the minimum/maximums are and what their meaning is.

Putting it all together, the overall flow of a content-based comparison in Versus looks like Figure 1.

Figure 1 API abstraction: given two files, extract a feature descriptor per file and then compute the
proximity between descriptors using a specific measure.

Indexing and Search Result

Besides content-based comparison in Versus, Versus framework supports content-based retrieval. It
indexes descriptors obtained from the extractor applied to the digital object (loaded by an adapter).
When query object is sent to Versus, it again obtained the descriptors from the query object and
query against the index and returns all matches.

The overall flow of a content-based retrieval in Versus looks is shown in Figure 2.

Figure 2 Content-based Retrieval in Versus Framework

Engines
An engine interface is included in the coke package. It supports different engine implementations,
each performing different computation with different components of versus framework.

A multithreaded execution engine is included in the core package. The execution engine is for
developers who want to develop clients for the Versus framework to use comparison resources. This
same engine is used in all the clients currently developed as part of the framework, but it could also
be used in new clients.

New submissions to the engine are in the form of Jobs . A job is a set of pairwise comparisons and a
unique ID. A comparison is a tuple of (Adapter, Extractor, Measure) and two input files. The engine

creates a thread for each comparison and submits to a thread pool that is bound to a predefined
number of concurrent threads at one time. The developer can submit a status handler along with the
job to respond to specific events in meaningful ways based on the application being developed. A
job can be in one of the following states: started, done, failed and aborted.

There are three more implementations of engine interface: Indexing Engine, Extraction Engine and
Comprehensive engine.

Comprehensive Engine extends the execution engine. It computes the similarity value for two files
for different combination of adapter, extractor and measure pair and finally do a linear combination
of these results with some weights to each result.

Indexing Engine is also a multithreaded engine that is being used for indexing and retrieval. When a
file is submitted to Versus for indexing, indexing engine extract the content descriptors or signatures
from file and index the file based on the descriptors. When an query file is submitted to index
resource, it uses indexing engine to query and return the matched search results.

Extraction Engine computes the content descriptors of a file for a given adapter and extractor pair.
Each such extraction job is performed by an individual separate thread.

Registry
The registry can be queried for a list of adapter, extractors and measures available on the Java
classpath. This creates a simple plugin mechanism that allows methods’ developers to register
individual implementations of adapters, extractors and measures with the Versus framework.

The registry uses Java service providers to register all possible implementations on the classpath so
that if a new Java archive (jar) that includes implementations of Versus method is added to the
classpath the registry will find them.

Command Line Interface
A simple command line interface (CLI) to execute comparisons is included in the core package. The
headless CLI is much simpler to adopt for certain use cases, for example, when the goal is to script
local execution or run comparison in windowless terminals. The interface requires the specification of
the location of the two files being compared and the adapter/extractor/measure triple to use for the
comparison as seen in Figure 3.

Figure 3. Command Line Interface Example. In this example we executed an MD5 comparison of two
TIFF images. The result was 0, meaning the two files are different.

Simple Versus GUI
The simple Versus GUI available in the versus-desktop package provide a simple desktop
application for the end user to launch local comparisons. The application was developed to make
testing of the API and implemented comparison measure and extractors easier. It is also a very
simple example of how all the different components of the core packages can be used to write an
application.

The application allows the user to select a directory on disk and load its contents. The user can then
select a data representation, feature extractor and similarity measure to launch pair wise
comparisons on all the files selected. Pairwise comparison results are presented down below in a
table format.

Figure 4. The list on the left shows all the files loaded. On the right pull down menus allow the
selection of a data representation (adapter), feature extractor and measure to be used in the next
run. The table at the bottom shows the results of the pairwise comparisons on all possible
combinations of files.

User's Manual
This section of the manual is relevant to all types of users. This explains how to use Versus web
service and web application.

Getting the Binary and Versus Service Deployment
Download latest build from http://isda.ncsa.illinois.edu/versus/latest/versus-service-0.6.0-
SNAPSHOT-bin.zip

unzip it

cd versus-service/bin

Configure differnt parameters in versus.properties in bin/src/main/config as explained
below based on your requirements:

master: specify the URL of the master. If this is not set or commented out, by default,
the current instance of versus web server becomes the master.

repository : Currently there are three implementations for storing comparisons in the
repository, i.e, memory, MySQL and mongoDB. By default, the value is set to mem .
The other options are myql and mongo .

extract: The field is used to specify extraction data storage implementation. By default,
it is set to mem .

files: This specifies the storage type for the uploaded file. By default, files are stored in
disk . The other implementation is mongo .

index: By default, the index is stored in disk and it is set to diskIndex . The other
option is jdbcIndex in which case it is stored in MySQl.

maps: By default, it is set to disk indicating that the map objects that store versus id
corresponding to their external urls for each file in the index are stored in the disk. The
other option is mqsql that let Versus stores in MySQL.

numThreads: By default, it is set to 2. It denotes the number of threads for the
ExecutionEngine and ComphrensiveEngine

OS: This denotes the operating system in which you would be running versus-service.
The options are windows and Linux

To use the default on-disk implementations, Set paths to data directory where you
want to store the data. For example:

file.folder=/Users/smruti/Data/versus/index1.txt
file.indexerfolder=/Users/smruti/Data/versus/indexer
file.map=/Users/smruti/Data/versus/map1.txt
file.directory=/Users/smruti/Data/versus/upload

Go into the bin folder and execute the appropriate startup script. There are two optional
parameters that can be specified:

1. the port number (defaults to 8080)
2. the url of the master (if not specified the instance will be the master)

For example:

> ./startup.sh
> ./startup.sh 8184 http://localhost:8182/api/v1

Versus Web Service and RESTful APIs
The Versus web service allows distributed applications to make use of the Versus comparison
algorithms and hardware resources remotely.

For those application developers who might not have the most advanced computational resources
and can scale horizontally their computational resources by adding more hardware of the same
specifications.

The service interface exposes methods written using the RESTful software architecture over the
Hypertext Transfer Protocol (HTTP). Any client who can speak HTTP, can easily communicate with
the service after understanding the specific endpoints available in the Versus web service. Because
most programming languages and systems support HTTP, and the RESTful architecture is easy to
understand, writing clients for the service is easy.

The goals of this service layer are 1) to enable horizontal scaling by allowing the addition of
computational resources in cloud-like way 2) to allow multi-OS executions of comparisons (i.e., the
composition of multiple Versus services running on different OS platforms), and 3) to provide
comparison web services for orchestrating complex services in workflows. We describe these three
goals in more detail.

The design of the service layers supports a master-slave architecture. A slave service can subscribe
itself to a master service. New slaves can be added to the master at runtime so that available
resources can shrink and grow on demand. This will help optimize resource use when dealing with
very large collections of documents.

When a master service becomes aware of a new slave, it can query the slave using appropriate
service interfaces to ask what methods are available on it. This is particularly useful for methods that
require specific resources. For example, certain methods might only work on a specific operating
system. A method implemented on a FPGA board might only be available on specific hardware
resources. By being part of the cloud, all the services provide a consistent interface to the client, so
that the client does not have to worry about implementation details and can focus on which methods
to execute based on their needs.

Last but not least, by providing a service interface to comparison resources, we enable loose
coupling of potential clients and comparison services. This means that access to the comparison
services can be easily scripted in any application without requiring building against the Versus
libraries. With a service architecture, any researcher or system that wants to make use of the
comparison service has a simple way to do so.

The service API provides REST endpoints in line with underlying Java API. The current
implementation includes the following REST endpoints for submitting different requests:

Adapters
An user can query for a list of current known adapters available on that particular instance of the
versus service via HTTP GET request to /adapters .

For example :

GET http://host:8080/api/v1/adapters

Each adapter available has its own endpoint describing information about that particular module via
GET request to /adapters/{adapter_id} .

GET http://host:8080/api/v1/adapters/{adapter_id}

{adapter_id} is the specific identifier of the adapter that we are interested in. By default, the
service uses the fully qualified class name of the Java class as the identifier of the adapter.

An example of an web interface to query /adapters REST endpoints is shown below:

Notice that in the last URL the last part of the URL is the ID of that particular adapter inside Versus.
The important thing to keep in mind is that the client does not need to know this ahead of time
because that particular URL is just one of the many returned by the previous GET. The above figure
shows an example of this when interacting with the service from a browser.

Extractors
To get the list of currently available extractors on that particular instance of the versus service, an

user can query REST endpoint /extractors . To get details about specific extractor module, the
user can query /extractors/{extractor_id} . Like for adapters, Versus web server can be
queried for extractors using web interface.

Measures
To get the list of currently available measures on that particular instance of the versus service, an
user can query REST endpoint /measures . To get details about specific measure module, the user
can query via GET request to /measures/{measure_id} . Like for adapters and extractors, Versus
web server can be queried for measures using a web browser.

File Upload
In order to perform pairwise comparison between two files, the two files need to be uploaded. A file
can be uploaded via GET request to /files/upload followed by a POST request. With a GET
request to the /files/upload, the server sends a webform that allow you to select and upload a file.
After one press send, it does a POST request and upload the file to the server and sends back a
file id to the client. This flow of action is shown below.

A previously uploaded file can be downloaded via GET request to the endpoint /files/{file id} .

Comparison REST API
To submit a new comparison request to the versus web server, one can send an HTTP POST
request to the URL:

http://host:8080/api/v1/comparisons

Included in the body of the POST are URLs of the two files being compared and the identifiers of the
adapter, the extractor, and the measure to use.

For example, the arguments are specified as shown below (key, value) pair appended to form the
body of the request:

dataset1=file1Url&dataset2=file2Url&adapter=AdapterId&extractor=ExtractorId&measure=
measureId

A web browser with GUI extensions to specify HTTP methods and body can be used to make a
comparison request to the Versus Web Server. For example for Chrome you can try cREST client. An
example of using cREST client with chrome to make HTTP POST request to /comparisons
endpoint is shown below.

In the response to the request, the server returns a comparison id and URL to access the

comparison.

The client can access the information about the comparison using the following URL:

http://host:8080/api/v1/comparisons/{id}

The client can query the status and and value of the specified comparison using the following URLs :

http://host:8080/api/v1/comparisons/{id}/status
http://host:8080/api/v1/comparisons/{id}/value

An example of comparison service endpoint with various status and value request is shown below.

Decision Support Service REST API
Decision support web services that utilize the Versus core Framework and Library have been
implemented. The implementation involved developing decision support web services for getting
statistics and optimal combination of adapter, extractor and measure for binary labeled and multi
labeled sampled files.

To submit a decision support service request for binary labeled files (similar or dissimilar files) to the
versus web server, send an HTTP POST request to the URL

http://host:8080/api/v1/decisionSupport

Included in the body of POST are URLs of the set of similar and dissimilar files, an adapter to use.

For example: The arguments are appended with '&' and provided as request body as shown below.

adapter=edu.illinois.ncsa.versus.adapter.impl.BufferedImageAdapter&
similarFiles=http://localhost:8080/api/v1/files/mno0105947062984081429305.jpg&
similarFiles=http://localhost:8080/api/v1/files/mno0112797641758376858352.jpg&
similarFiles=http://localhost:8080/api/v1/files/mno0128915359200313575286.jpg&
similarFiles=http://localhost:8080/api/v1/files/mno0135147501424480553896.jpg&
similarFiles=http://localhost:8080/api/v1/files/mno0144276238537340112360.jpg&
similarFiles=http://localhost:8080/api/v1/files/mno0151971531815575185168.jpg&
dissimilarFiles=http://localhost:8080/api/v1/files/Image07117236837207586707.jpg&
dissimilarFiles=http://localhost:8080/api/v1/files/Image084565197057939613645.jpg&
dissimilarFiles=http://localhost:8080/api/v1/files/Image096244790252667283114.jpg&
dissimilarFiles=http://localhost:8080/api/v1/files/Image101369081828034857026.jpg&
dissimilarFiles=http://localhost:8080/api/v1/files/Image114742913348975720071.jpg&
dissimilarFiles=http://localhost:8080/api/v1/files/Image126000615581631743708.jpg

Note that the format of input is same as in case of comparison service.

Once the decision support request is submitted, it returns an id for the request submitted.

You can access the results of the request via HTTP GET method to

http://host:8080/api/v1/decisionSupport/{id}

You can get all decision support requests results via HTTP GET to the endpoint
\decisionSupport .

Similarly, to submit a request for decision support service for multi labeled files, send a HTTP POST
request to

http://host:8080/api/v1/multiLabelDecisionSupport

Included in the POST body urls of the multilabeled files, number of labels, method to perform
decision support(i.e probabilitics or inverse K-mean) and an adapter to use.

Shown below is an example of the body of the POST request.

adapter=edu.illinois.ncsa.versus.adapter.impl.BufferedImageAdapter&
method=probabilistic&
k:3&
data0=http://localhost:8080/api/v1/files/owl0095898639013296543251.jpg&
data0=http://localhost:8080/api/v1/files/owl0107580951319826054753.jpg&
data0=http://localhost:8080/api/v1/files/owl0116858822357862217962.jpg&
data1=http://localhost:8080/api/v1/files/owl0126252339603498263706.jpg&
data1=http://localhost:8080/api/v1/files/owl0138941707136462733705.jpg&
data1=http://localhost:8080/api/v1/files/owl0144347999815809592024.jpg&
data2=http://localhost:8080/api/v1/files/owl0152520539069110679269.jpg&
data2=http://localhost:8080/api/v1/files/owl0164203616588807869187.jpg&
data2=http://localhost:8080/api/v1/files/owl0177472309747319811844.jpg&
data0=http://localhost:8080/api/v1/files/owl0187953897869039444700.jpg&
data1=http://localhost:8080/api/v1/files/owl0194097604817385207009.jpg&
data2=http://localhost:8080/api/v1/files/owl0206552970288709601801.jpg&

Once the request is submitted, an id is returned and the results can be accessed via HTTP GET to

http://host:8080/api/v1/multiLabelDecisionSupport/{id}

Master Slave REST API
This master slave API is mostly used by administrator to horizontally scale the versus web service.

A versus web server instance becomes a slave if in versus.properties file , a master url has been
specified that is different than the instance's own url or as command line argument, master url is
specified., otherwise by default it becomes a master.

A versus web server automatically register itself to the master as slave using REST endpoint
/slaves/add at instantiation of the service. To query list of slaves, the client can send a GET
request to endpoint /slaves .

Indexing Service REST API
Versus indexing service can be accessed using the endpoint /index and URL of the form:

http://host:8080/api/v1/index

where host is the IP address of the host running Versus web server. An HTTP GET method to this
URL would return all indexes ids stored in Versus web server. To create a new index, we send a
HTTP POST request with (Adapter Id, Extractor Id, Measure Id, Indexer Id) tuple to the above
endpoint (i.e /api/v1/index). All the indexes can be deleted via HTTP DELETE method to the same
URL.

An example usage of the endpoints is as shown below:

A specific index with id {index_id} can be accessed via HTTP GET method to the following URL :

http://host:8080/api/v1/index/{index_id}

It would return Adapter Id, Extractor Id, Measure Id, Indexer Id and List of File Ids in the specified

index. An index can be deleted with the same URL via HTTP DELETE request.

If we add more files to the database and consequently need to add their content descriptors to a
specific index, we send an HTTP POST request with file’s URL to the following endpoint:

http://host:8080/api/v1/index/{index_id}/add

An example of the usage of the /index/{indexid}/add endpoint is shown below:

After several additions of files' content descriptors and corresponding identifiers to respective lists of
an indexer, we build the specified index via an HTTP POST request to the following URL with no
request body specified:

http://host:8080/api/v1/index/{index_id}/build

A specific index can be queried by sending request via an HTTP POST with query's file URL to the
following URL:

http://host:8080/api/v1/index/{index_id}/query

This would display the search results for the query file. An example usage of this endpoint is shown
below.

Clients
You can write different clients to talk to the service RESTful API.

cURL
An user can use curl to test the service. If you are on Linux or MacOSX you should have it already.
Try typing curl on the command prompt. If you are on windows, you can download a build at

http://curl.haxx.se/. If you want a more rich GUI experience most web browsers have extensions that
can be used instead. For example for Chrome you can try cREST client.

To start testing versus-service without deploying it, you can use the service available at
http://versus.ncsa.illinois.edu:8182/api/v1 as in the example but if you are using a different instance
(for example localhost) replace accordingly.

To list methods Extractors available at that location:

curl -H "Accept: application/json"
http://versus.ncsa.illinois.edu:8182/api/v1/extractors

We asked for json. The service actually default to json. But if we go there with the browser we see
formatted html. Try requesting html:

curl -H "Accept: text/html" http://versus.ncsa.illinois.edu:8182/api/v1/extractors

Now let's make it a bit more interesting by submitting a comparison between two files.

curl -H "Content-type: application/x-www-form-urlencoded" -X POST -d
"dataset1=http://www.ncsa.illinois.edu/assets/img/footer_ncsa.png&dataset2=http://is
da.ncsa.illinois.edu/drupal/sites/default/files/danland_logo.png&adapter=edu.illinoi
s.ncsa.versus.adapter.impl.BytesAdapter&extractor=edu.illinois.ncsa.versus.extract.i
mpl.MD5Extractor&measure=edu.illinois.ncsa.versus.measure.impl.MD5DistanceMeasure"
http://versus.ncsa.illinois.edu:8182/api/v1/comparisons

Please pay close attention to the payload of our submission. It is the same format as we submitted
through the browser using CREST client. Take a look in a more readable form:

dataset1 = http://www.ncsa.illinois.edu/assets/img/footer_ncsa.png
dataset2 =
http://isda.ncsa.illinois.edu/drupal/sites/default/files/danland_logo.png
adapter = edu.illinois.ncsa.versus.adapter.impl.BytesAdapter
extractor = edu.illinois.ncsa.versus.extract.impl.MD5Extractor
measure = edu.illinois.ncsa.versus.measure.impl.MD5DistanceMeasure

It's hard to see if you are on the command line, but the call should have returned a long string of
characters, for example f6eda3ee-400e-475a-9703-426811dc4633 . That's the id of our new
comparison. Let use that id to see the status of the comparison:

https://chrome.google.com/webstore/detail/dev-http-client/aejoelaoggembcahagimdiliamlcdmfm

curl http://versus.ncsa.illinois.edu:8182/api/v1/comparisons/f6eda3ee-400e-475a-
9703-426811dc4633

Should return something like this:

{"id":"f6eda3ee-400e-475a-9703-
426811dc4633","firstDataset":"http://www.ncsa.illinois.edu/assets/img/footer_ncsa.pn
g","secondDataset":"http://isda.ncsa.illinois.edu/drupal/sites/default/files/danland
_logo.png","adapterId":"edu.illinois.ncsa.versus.adapter.impl.BytesAdapter","extract
orId":"edu.illinois.ncsa.versus.extract.impl.MD5Extractor","measureId":"edu.illinois
.ncsa.versus.measure.impl.MD5DistanceMeasure","value":"0.0","status":"DONE"}

For this particular measure a value of 0 means the MD5 hashes did not match, while with 1 they did.
Try comparing the same file:

curl -H "Content-type: application/x-www-form-urlencoded" -X POST -d
"dataset1=http://www.ncsa.illinois.edu/assets/img/footer_ncsa.png&dataset2=http://ww
w.ncsa.illinois.edu/assets/img/footer_ncsa.png&adapter=edu.illinois.ncsa.versus.adap
ter.impl.BytesAdapter&extractor=edu.illinois.ncsa.versus.extract.impl.MD5Extractor&m
easure=edu.illinois.ncsa.versus.measure.impl.MD5DistanceMeasure"
http://versus.ncsa.illinois.edu:8182/api/v1/comparisons

Let's try a different set of measures. Something image related like the distance between binned RGB
histograms:

curl -H "Content-type: application/x-www-form-urlencoded" -X POST -d
"dataset1=http://www.ncsa.illinois.edu/assets/img/footer_ncsa.png&dataset2=http://is
da.ncsa.illinois.edu/drupal/sites/default/files/danland_logo.png&adapter=edu.illinoi
s.ncsa.versus.adapter.impl.BufferedImageAdapter&extractor=edu.illinois.ncsa.versus.e
xtract.impl.PixelHistogramExtractor&measure=edu.illinois.ncsa.versus.measure.impl.Hi
stogramDistanceMeasure" http://versus.ncsa.illinois.edu:8182/api/v1/comparisons

Let's switch our attention to indexing. Let's create a new index by specifying what implementations
to use.

curl -H "Content-type: application/x-www-form-urlencoded" -X POST -d
"Adapter=edu.illinois.ncsa.versus.adapter.impl.BufferedImageAdapter&Extractor=edu.il
linois.ncsa.versus.extract.impl.RGBHistogramExtractor&Measure=edu.illinois.ncsa.vers
us.measure.impl.KLdivergenceMeasure&Indexer=edu.illinois.ncsa.versus.store.LinearInd
exerDisk" http://versus.ncsa.illinois.edu:8182/api/v1/index

Let's add a few files to the index:

curl -H "Content-type: application/x-www-form-urlencoded" -X POST -d
"infile=http://www.ncsa.illinois.edu/includes/images/about.jpg"
http://versus.ncsa.illinois.edu:8182/api/v1/index/54d55e93-f268-428f-860b-
6d80280f76a7/add

After adding at least three files we can query by posting to the /query endpoint:

curl -H "Content-type: application/x-www-form-urlencoded" -X POST -d
"infile=http://www.ncsa.illinois.edu/includes/images/about.jpg"
http://versus.ncsa.illinois.edu:8182/api/v1/index/54d55e93-f268-428f-860b-
6d80280f76a7/query

Java Client
One can also write a java client for versus-service comparisons easily.

For example:

VersusComparisonClient client=new VersusComparisonClient("localhost",8080);

String dataset1="http://www.ncsa.illinois.edu/includes/images/about.jpg";
String dataset2="http://www.ncsa.illinois.edu/includes/images/acb.jpg";
String adapter="edu.illinois.ncsa.versus.adapter.impl.BufferedImageAdapter";
String extractor="edu.illinois.ncsa.versus.extract.impl.RGBHistogramExtractor";
String measure="edu.illinois.ncsa.versus.measure.impl.HistogramDistanceMeasure";

client.setData(dataset1, dataset2, adapter, extractor, measure);
String comparisonid=client.compare();
String status=client.getStatus(comparisonid);
if(status.equals("DONE"))
{
String value=client.getValue(comparisonid);
log.debug("Comparison ID: "+ comparisonid+" Status="+ status+ " Value="+value);
}

VersusComparisonClient is nothing but a wrapper around a HttpClient that establishes a http
connection between client and Versus web server and does all the http requests. This example has
been included in the versus-service package.

Versus Web Application
We designed Versus web application focusing on the end-user needs specifically for comparison

and decision support services.

To start Versus web application, you need to start the JettyServer.java in ds-web project. To use
Versus web application, type in

http://localhost:8080

into your browser. It will display the page shown below:

To compare two files, click on the corresponding button and it will go to the compare webpage as
shown below:

Compare two files web interface lets the user to choose an adapter, an extractor and a measure and
upload two files to perform the comparison and returns the similarity value.

If you want to decide on the best extractor-measure pair for a multilabled files, then you need to click
on the corresponding button, it will go to decision support web page for multi-labeled files. The
webpage is shown below:

In this web interface, the user chooses an adapter, the decision support method, the number of
labels, and uploads a set of files and label them, and submit the request. The results and
corresponding graphs are displayed on the webpage for the user.

Developer's Manual
A developer is a person who either contributes new methods to the existing framework using existing
Java APIs or a person who contribute to the design of the framework.

Software Requirements
1. Eclipse IDE for Java Developers (the recent version has maven in it)
2. Java JDK 6
3. MySQL (if you configure versus.properties for mysql for storage of all comptutations and/or

index)

Checking Out Code
Versus Project source code can be obtained from from our git repository at

https://opensource.ncsa.illinois.edu/stash/scm/vs/

Versus Project consist of several sub projects. versus-core is the standalone buildable unit and that
does not depend on any another sub projects. It can be checked out using the following link:

https://opensource.ncsa.illinois.edu/stash/scm/vs/versus-core.git

versus-core consists of all basic interfaces and their implementations. It can be used as a
library/framework to other service.

For other services and support, one can checkout other projects such as versus-service, versus-
image, etc similar to versus-core. Note that all other sub projects depends on versus-core. Following
are the list of projects and their purposes:

1. versus-image: It consists of different implementation of adapter, extractor and measure
interface specific to images. It depends on versus-core.

2. versus-service: It provides REST API for various services using versus framework and
depends on versus-core, versus-image and versus-census. It provides simple comparison
service, decision support service and indexing services.

3. versus-ds-web: It provides the web interface to decision support service. It depends on
versus-core,versus-service, versus-image.

4. versus-census: It provides specific implementation of extractor interface for handwritten
scanned document.

https://opensource.ncsa.illinois.edu/stash/scm/vs/
https://opensource.ncsa.illinois.edu/stash/scm/vs/versus-core.git

Execution
Before execution, one has to set various configuration parameters in the versus.properties file as
specified in User's manual.

Go to edu.illinois.versus.service and run JettyServer.java as a java application

Building code
To build the source code and create a jar file, the developer has to do

Run as->maven clean
Run as-> maven build
goal: assembly:assembly

Versus Java API
The versus-core package consists of core interfaces required in the Versus framework. In the
overview section we gave an overview of those interfaces. In this section, we will go in more details
of Java API and classes and methods responsible for it.

Adapter

The interface that defines the Adapter is edu.illinois.ncsa.versus.Adapter. It enforces two methods:
getName() and getSupportedMediaTypes(). getName() method returns the name of the adapter and
getSupportedMediaTypes() lists the supported mime types by the adapter.There are also interfaces
that extends this Adapter interface such as Fileloader (to load a file from the disk to the data
structure specific to the adapter), HasPixels (get pixels from the document), HasBytes (get bytes
from the document), etc.

The package that contains various implementation of the Adapter Interfaces is
edu.illinois.ncsa.versus.adapter.impl. Currently there are four implementations of Adapters:
BytesAdapter (versus-core), DummyAdapter (versus-core), BufferedImageAdapter (versus-image)
and ImageObjectAdapter (versus-image).

Extractor

The Extractor interface extracts a particular feature from an adapter. It enforces the method extract()
that takes an adapter as input and returns a specific descriptor. Other methods that it defines are:
getName(), getFeatureType(),hasPreview(),and previewName(). Currently there are several
implementations of Extractor interface and can be found in the package
edu.illinois.ncsa.versus.extract.impl inside versus-core package as well inside versus-image for
image extractors.

Measure

The Measure interface compares two features and returns a similarity value indicating how similar
the two features are. It enforces compare() method that takes as input two descriptors obtained from
an extractor and returns a similarity value. Three other methods defined in the interface are

getFeatureType(), getName() and getType(). Currently there are several implementations of Measure
interface that can be found inside package edu.illinois.ncsa.versus.measure.impl inside versus-core
project and in versus-image project.

Engine

The Engine interface enforces methods to implement methods that do the comparison tasks. There
are two implementations for this interface: ExecutionEngine and ComphrensiveEngine.

There are also other engines in the edu.illinois.ncsa.versus.engine.impl such as IndexingEngine and
ExtractionEngine but they do not extend Engine interface currently.
edu.illinois.ncsa.versus.engine.impl.IndexingEngine provides a way to index a document. The user
can add new documents by passing in files to the engine. The engine keeps a thread pool of workers
to handle however many jobs at one time depending on the number of threads configured.
edu.illinois.ncsa.versus.engine.impl.ExtractionEngine enables user to pass in file for extraction of
features and returns descriptors for it.

Indexer

To help developers for rapid development of indexing service with different indexers, we defined an
Indexer interface. It enforces three important methods: addDescriptor() to add descriptor of the
document to the indexer; build() to build the index; and query() to query for a digital object into the
existing index. The various implementation of Indexers can be found in
edu.illoinois.ncsa.versus.store package inside versus-service project. Note that for any
implementation of Indexer interface has both disk and JDBC implementation of it. That is a linear
indexer can serializes it content and store it in disk or the indexer can use MySQL to do the same.
So you will find two implementation of LinearIndexerDisk and LinearIndexerJDBC. This is true for
other indexers as well.

Adding New Implementations
Developers who want to add new methods to the framework can easily do so by extending Java
APIs in versus-core project. To add new implementations of Adapter, Extractor, and Measure need
to extend their respective interface and implement the methods. To be able to retrieve all the
implementations of Adapter, Extractor amd Measure avaliable on the classpath, ServiceLoader
functionality has been introduced. The CompareRegistry class uses ServiceLoader to get all
available implementations on classpath and load them to a list. It also implemented some helper
methods such as getAdapters(), getExtractors(),getMeasures(), getAvailableAdaptersIds(),
getAvailableExtractorIds(), getMeasureIds(), etc.

To use SeviceLoader functionality, one needs to add the class name to file for the corresponding
Interface under services folder in src/main/resources/META_INF . For example, if you have
implemented an Extractor, say edu.illinois.ncsa.extract.impl.PdfExtract, then add
edu.illinois.ncsa.extract.impl.PdfExtract to edu.illinois.ncsa.versus.extract.Extractor file in
src/main/resources/META_INF/services.

Versus-Service

Versus web service is designed to support RESTful API. This has been implemented using JBoss
Resteasy(which follows JAX-RS specifications). Several services have been implemented and can be
accessed through their REST endpoint as explained in the user manual section. Inthis section we
look into the details of versus web service development and configuration.

Storage Implementation
Individual services have the option of storing comparison results in memory, disk, MySQL or in
mogoDB. This is also true for other service such as indexing service etc. Files are stored in disk.
From an end-user perspective, switching between storage implementations is enabled via the
versus.properteis file by setting the desired storage choice. From developer perspective,
implementing a new storage implementation is enabled by providing implementations of a simple
Java interface. To link the interface to the implementations, we use dependency injection and rely on
the Guice Java library to make it easier for new storage implementations to be added to framework.
The dependency injection design pattern decouples the different implementations to the framework.

For example: For comparison service, edu.illinois.ncsa.versus.store.ComparisonProcessor interface
defines methods to manipulate storage of comparisons in repository. There are three implementation
of this interface: InMemoryComparisonProcessor, JDBCComparisonProcessor and
MongoComparisonProcessor. There is another interface
edu.illinois.ncsa.versus.store.ComparisonService that handles dependency injection of storage
implementation in repository. There is a class edu.illinois.ncsa.versus.store.RepositoryModule that
binds the ComparisonService interface to its implementation class,i.e., ComparisonServiceImpl, and
binds the ComparisonProcessor class to a specific storage implementation class. Based on the
storage option configured in the versus.properties , the ComparisonProcessor binds that to the
implementation, say JDBCComparisonProcessor , and ComparisonServiceImpl does the
dependency injection of the implementation chosen and uses this implementation every time there is
manipulation of comparisons and store comparisons in MySQL.

Similarly, for indexing service, edu.illinois.ncsa.versus.store.IndexProcessor interface defines
methods to manipulate storage of indexes in repository. There are three implementations of this
interface: InMemoryIndex, JDBCIndexProcessor and DiskIndexProcessor. The interface
edu.illinois.ncsa.versus.store.IndexService handles the indexes in the repository and does the
dependency injection. Again in edu.illinois.ncsa.versus.store.RepositoryModule, all bindings are
done.

Note that though an indexer has a disk and JDBC implementation, no specific implementation is
binded in the RepositoryModule. The reason behind it is that an indexer is instantiated on user
request for creation of index or query or add to index. So it is not known at the compile time about
the implementation.

Servlet Configuration
When the Jetty Server starts, the servlet context needs to be initialized before the web application
starts. For that, edu.illinois.ncsa.versus.serviceVersusServletConfig implements Java
ServletContextListener interface. It enforces contextInitialized() and contextDestroyed(). The
contextInitialized method loads versus registry to the servlet context, instantiates execution, indexing

and extraction engine, initialized all data structures that are shared across different requests.
contextDestroyed() methods removes the context that were initialized by contextInitialized().

Guice dependency injector is also added to the servlet context implementing GuiceServletConfig
class that extends GuiceServletContextListener.

All these listener classes and Application(service resource) are specified in src/main/webapp/WEB-
INF/web.xml file whose path is specified in JettyServer for setting up WebApp context.

REST Service Resource
Various Versus web services are implemented and packaged in edu.illinois.ncsa.versus.rest in
versus-service project. For example, for comparison service, we implemented a class
edu.illinois.ncsa.versus.rest.ComparisonResource . To register the service with the web server so
that REST endpoint, for example /comparisons, is available for users, the class is added to the
versus REST service application in edu.illonois.ncsa.versus.rest.VersusRestApplications class.

Testing
To test various versus service, several unit tests have been included in the package
edu.illinois.ncsa.versus.rest in the folder src/test/java. For example, to test comparison resource, a
unit test is included with @Test annotation with testSubmit method. A developer can easily include
their own unit test for different service resources.

Acknowledgments
The software development was partially supported by the National Archives and Records
Administration (NARA).

