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Abstract—We describe our efforts with the National Archives
and Records Administration (NARA) to provide a form of
automated search of handwritten content within large digitized
document archives. With a growing push towards the digitization
of paper archives there is an imminent need to develop tools
capable of searching the resulting unstructured image data as
data from such collections offer valuable historical records that
can be mined for information pertinent a number of fields from
the geosciences to the humanities. To carry out the search we use
a Computer Vision technique called Word Spotting. A form of
content based image retrieval, it avoids the still difficult task of
directly recognizing the text by allowing a user to search using a
query image containing handwritten text and ranking a database
of images in terms of those that contain more similar looking
content. In order to make this search capability available on an
archive three computationally expensive pre-processing steps are
required. We describe these steps, the open source framework
we have developed, and how it can be used not only on the
recently released 1940 Census data containing nearly 4 million
high resolution scanned forms, but also on other collections of
forms. With a growing demand to digitize our wealth of paper
archives we see this type of automated search as a low cost
scalable alternative to the costly manual transcription that would
otherwise be required.

I. INTRODUCTION

Innumerous digital archives of scanned documents are being
made available to the public. While the information contained
in small to middle sized collections can be retrieved manually
in a reasonable amount of time, this is not the case for large
collections composed of terabytes of data spanning millions
of images. In particular, digital archives of handwritten forms
currently possess no viable or practical means of searchable
access. The possibility to search images of handwritten text
is fundamental for providing genuine access to the digitized
data such as the 1940 Census forms released by the US Census
Bureau and the National Archives and Records Administration
(NARA), a collection containing 3.25 million images and
approximately 18 terabytes of raw image data. Information
from collections such as these are valuable historical data
sources that could potentially be used in a variety of eScience
efforts if the contained images of handwritten data were
searchable. Census data for example can offer insights into
climate change and population movement a century or more
ago. The current means of providing searchable access to
such data is through manual transcription, a process involving
thousands of people and months of time. We focus here on
developing an automated, low cost, and scalable alternative.

Multiple-author handwritten text recognition is still an open
and actively researched topic within Computer Vision [1], and
therefore an alternative approach based on the increasingly
popular approach of content-based image retrieval (CBIR) was
considered [2, 3]. Here, partially using the Word Spotting
methodology [4, 5, 6, 7, 8, 9, 10, 11], a distance metric
between images containing handwritten content is defined.
Given a query image, multiple results consisting of its top
matches are returned. Although the user still needs to search
within these results, which might include bad matches, the
search is downscaled from billions to a small number of
images. The human involvement in this final stage of the
search is then utilized to improve future query results through
a passive crowd sourcing element.

In order to provide this image-based searchable access to
the collections’ content, we use High Performance Computing
(HPC) resources to handle fundamental pre-processing steps
that are computationally expensive (Figure 1). First, forms
are segmented into cells based on the forms’ columns and
rows. Each form of the 1930 Census, our test collection,
contains 1900 cells producing roughly 7 billion cell sub-
images for the entire collection. Next, 30-dimensional feature
vectors are extracted from each cell image generating an
equal number of signature vectors. Finally, these signature
vectors are clustered using Complete-Linkage Hierarchical
Agglomerative Clustering and searchable trees are built based
on the resulting hierarchy; these are later used as indices to
speed up the searching process.

The sections that follow provide a brief background on
handwritten recognition, describe these pre-processing steps in
more detail, focus on the framework capabilities, and discuss
results obtained with the proposed framework for searchable
access to handwritten data within digitized archives.

II. BACKGROUND

The scientific literature focusing on handwriting recognition
is extensive. Nevertheless, most papers focus on constrained
instances of the problem and leverage these constraints to
achieve the desired results. Many studies assume a known
language model (e.g., probabilities of word pairs) and use
it during the retrieval process [12, 13, 14]. This approach
however is usually applied to single author writings and can
only be used in free-text documents, which exclude forms in
general. Srihari et al. [15] concentrated in a narrow vocabulary



Figure 1. A flow chart of the 3 pre-processing steps required to
provide the image based search on the 1940 Census data. 1: The
spreadsheet-like Census forms are segmented into individual cells.
2: A numerical signature is constructed to represent the handwritten
contents of each cell. 3: A hierarchical index is constructed over the
cell signatures.

and successfully achieved recognition of handwritten text by
various writers. This system, which starts by recognizing
a numerals-only ZIP code and then matches the text to a
restricted group of possible addresses within the specific zone,
is used by the United States Postal Services. Manmatha and
colleagues [9] achieved 75% recognition precision but viable
datasets need large amounts of training samples per category.
Although Milewski et al. [16] focus on forms, their research
deals with a very small lexicon of medical terms.

Manmatha et al. [4, 6] suggested that word images could
be retrieved from handwritten manuscripts without recogni-
tion. The idea was that these images could be described
by a set of word features, among them the upper profile,
lower profile, ink/background transitions and projection profile
(amount of ink per column) of word images. These features
are then combined into a feature vector and represent an
image “signature” or descriptor. The similarity between two
signature vectors can be judge by comparing them according to
some predefined method. Clearly, small variations in style, as
character spacing for example, do not change the meaning of
a word and thus the comparison method should take possible
variations into account or alternatively the signature vectors
should be invariant to these changes. Dynamic Time Warping
(DTW) [17] is commonly used as a signature comparison
method to overcome some possible variations in handwriting
with the downside of being relatively time consuming. Rath
et al. [8] obtained signature vectors invariant to some styling
discrepancies by applying Fourier Transform to each of the
profiles and using their first coefficients to compose the
signature vectors. With the same intent, we apply the cosine
transform to each of the upper, lower and projection profiles
and use the first 10 coefficients of each to build the feature
vectors which can be then successfully compared using a

simple Euclidian distance.
Typically, once feature vectors are extracted from all im-

ages, they are used to cluster the images into k clusters.
The most interesting clusters are then annotated and are used
as indices for the searching procedure, thus enabling ASCII
search. The amount of clusters (k) is usually calculated using
Heap’s law [18] which estimates the vocabulary size based
on the size of the corpus. However, in our case k cannot
be estimated from Heap’s law since prose and forms have
different word frequencies. Moreover, the users are likely to
require searchable access to unusual or obscure words, such
as less common private and family names. Finally, even if k
was known and the searchable terms were only very frequent
ones, the multiple handwritten styles are likely to generate
very heterogeneous clusters.

As an alternative to this classical Word Spotting approach,
the described system is queried by images from which feature
vectors are extracted. The searching process can then be based
solely on comparing the query vector to each of the signature
vectors in the database. Nevertheless, for large collections such
as the 1940 US Census it is not a practical approach and
an alternative type of index is needed. This is accomplished
by using a Hierarchical Agglomerative Clustering method to
build a hierarchy between the signature vectors, and thus the
images; cluster trees are built based on the resulting cluster
dendogram and used later during the searching process. The
clustering and indexing steps will be described in details in
the sections below.

III. PRE-PROCESSING

As previously mentioned, three computationally expensive
pre-processing steps are required in order to provide search-
able access to archives using the framework presented. These
steps consist of segmenting the image forms, extracting the
signature vectors that are used to describe each cell in an
image, and clustering the vectors into cluster trees which will
be used as indices to the system.

A. Form Segmentation

This first pre-processing step aims to accurately segment the
scanned images of the spreadsheet like Census forms into sub-
images of cells. These cells are the units of information we
wish to search over. The layout of the 1930 US Census forms
resembles a grid mostly containing 50 rows and 38 columns
of data. The scanned forms usually contain many physical
imperfections, e.g. tears, smudges, and bleed-throughs, and
are often slightly rotated due to imperfect alignment during the
scanning process. Previous work in form segmentation [19, 20]
was adapted to deal with the above mentioned problems, and
paying particular attention to the resource demands required
in terms of processing the 3.6 million high resolution (20-60
megapixel) Census form images.

Initially, an individual form is loaded as a grayscale image
into memory. Each image is down-sampled to 25% of its orig-
inal size so to improve the speed of processing it. The down-
sampled image is then binarized so that each pixel is assigned



a value of 1 (black pixels such as text and lines) or 0 (white
pixels such as the ones present in the image background).
The binarization process makes the image easier to deal with
while also partially removing noise, such as smudges and
CCD noise. A morphological thinning process is then applied
to erode the white regions around the forms. Next, all lines
and handwritten text, likely several pixels thick in the original
image, have their thickness reduced to one single pixel. Care
must be taken when thinning an image as it can lead to
new artifacts [21] and thus we utilize a thinning approach
that was specifically designed for character recognition [22].
Finally, any rotation generated during the scanning process is
corrected so to facilitate the cells extraction (see Figure 2).
This is done by first detecting long horizontal lines in the
image using a Hough transform [23]. The transform is costly
to carry out on large images and is one of the main reasons
for the previous down-sampling of the images. In general, the
majority of the lines found are horizontal form lines with a
few additional long vertical lines. A histogram is built with the
angles of these lines, the largest bin is identified, and the angles
that contributed to the chosen bin are averaged to identify
the rotation of the form. The image is then un-rotate while
assuming the rotation was around the center of the image.

Subsequently, straight lines within the rotation-corrected
form are detected by summing the ink pixels along the
horizontal and vertical axis of the image. These sums are
used to identify locations above a certain threshold, which
is based on the dimensions of the image, as locations of a
form line. Though more robust than the Hough transform,
the resulting lines will still have extra and missing form lines
(see Figure reffig-segmentation). To deal with these missing
and extra lines, a form template was constructed by hand
labelling all horizontal and vertical form lines from one single
form among the approximately 3.6 million Census images.
The template stores the number of form lines along with
their relative locations. After the basic lines are detected in
each rotation-corrected image, we search through the space of
2D rigid transformations, limited to scaling and translation,
that best aligns the lines found in the image to the ones in
the template. We search this space of transformations in an
efficient manner taking into account known constraints such
as the number of lines in the form. Each possible alignment
is evaluated using either a dot product of the transformed
template with the binarized image or using dynamic time
warping [17] between the template lines and the image lines
detected. The dynamic time warp allows for comparisons to be
made despite missing or extra lines between the two sets. Both
methods give comparable results and run at nearly the same
speed. In order to improve the speed of this step, the form
matching of horizontal and vertical lines can be performed
separately, converting a 2-dimensional problem into two much
smaller 1-dimensional ones.

Once the template matching step is finished, the cell con-
tents can be extracted using the fitted template line positions to
delineate a particular row/column (see Figure 2). The retrieved
contents of a cell might be chopped on the sides or include

portions from neighboring cells as a result of the image down-
sampling, the precision of the estimated angle of rotation, and
the underlying assumption that the form was rotated about the
center. Thus, a refinement step, which consists of a small-scale
version of the previous steps, is carried out on the retrieved
cell to correct the possible imperfections. Finally, the location
of each cell within the image is then stored in the database
as individual grayscale images sliced from the original form
image.

B. Signature Extraction

In order to apply the Word Spotting approach to our dataset,
feature vectors need to be extracted to represent each form
cell. This pre-processing step focuses on extracting the relevant
features of the handwritten words.

Wordspotting techniques obtain best results when the feature
vector is extracted from clean text devoid of noises such
as borders, small spots/smudges, extra padding, etc. These
image artifacts are reduced through additional refinement steps
performed on each cell’s image. First, it is rescaled to have a
fixed canonical height since some Word Spotting techniques
are height-dependent. Then the resulting image is binarized
so that the ink strokes, our focus of interest, are among the
non-zero values in the image. The next step is to attempt to
remove white pixels that are not part of the text but are remains
of the cell’s border. In addition, small isolated areas of white
pixels, which are not part of the desired text, are also removed.
Finally, white ink pixels are centered within the cell’s image.

With the refined cell image at hand, three features described
by Rath et al [8] are extracted from the cell’s content. The
upper profile is found by scanning vertically the cell image
until getting to the first ink pixel of each vertical pixel line.
The bottom profile is found by a similar process starting at the
bottom of the sub-image. The projection profile is calculated
by summing the pixel values along the vertical axis of the cell
image.

A discrete cosine transform is computed for each of the
profiles and the first 10 coefficients of each are used to build
the cell’s signature vector. Since only the lower coefficients are
preserved, high- frequency components are discarded helping
to ignore undesired details that result from handwriting varia-
tions. This approach also guarantees that every vector will be
exactly the same size, independently of the sub-image dimen-
sions, which facilitates future comparisons between different
feature vectors. The resulting feature vector for that particular
cell is then added to the database as an array of doubles.

C. Signature Indexing

Altogether roughly 7 billion cell images compose the 1930’s
Census data. This is the number of image cells that would be
compared to a query image if the system should be searched
in a linear manner. Assuming that single comparison takes a
very generous 1 millisecond to be executed, it would take 81
days just to carry out all the comparisons needed for one single
query.



Figure 2. Top left: An example 1930 Census form image containing gray values between 0 (black) and 1 (white). Top right: The thinned
threshold image with inverted values for black and white. Middle left: Lines found with a Hough transform. Middle right: The un-rotated
image with horizontal/vertical form lines aligned with the rows/columns of the image. Bottom left: The form lines found within the rotation
corrected image. Note the existence of missing form lines as well as non-form lines at the borders of the form. Bottom right: The form lines
obtained by matching a template to the lines obtained from the rotation-corrected image.

Usually a sort of index of the entries within the database
is constructed to speed up the search. The index is a list,
possibly hierarchical or otherwise structured, of signature
vectors representing each image in the database. Here, the
index built is similar to a binary search tree, and the search
procedure used takes advantage of its structure so not to search
through every entry in the database aiming for a logarithmic
number of comparisons per query.

Hierarchical Agglomerative Clustering with Complete Link-
age is used to cluster the signature vectors in a bottom-up

procedure until one single cluster remains. The merging steps
of the clustering process are used to build a binary tree of
clusters, where each cluster is composed by signature vectors
that were grouped together by the algorithm and is represented
by an average signature vector. When searching the data, a
cluster tree can be descended by comparing the query vector
to average cluster signature vectors until arriving at a cluster
of suitable size. The query vector will then be compared in
a linear manner to all the signatures contained in the chosen
cluster.



Since the Hierarchical Agglomerative Clustering with Com-
plete Linkage is very resource demanding, alternative cluster-
ing and hierarchy-building algorithms were considered. Due to
its faster running time, tests on using Single Linkage instead of
Complete Linkage were performed, but yielded unsatisfactory
results. Kd-trees were also considered as a possible solution,
but the large high-dimensionality of the signature vectors
make the search in the tree very inefficient. K-means was
not adequate here since, as explained before, k could not be
estimated. Approximations to any clustering algorithms or kd-
trees were deemed to be prejudicial due to the complexity of
the task at hand.

The naive Hierarchical Agglomerative Clustering with Com-
plete Linkage implementation has O(n3) time complexity and
possibly O(n) space complexity. The approach used here [24]
is bound by O(n2logn) time and O(n2) space complexity. Due
to the quadratic element of both time and space complexity
is not practical to build one single cluster tree for the entire
vector set. Instead, the vectors were divided by states, reels
within states and categories (columns in the Census forms).
Therefore the system’s index is composed by multiple cluster
trees. North Carolina’s index, for example, is composed by
2280 cluster trees (60 reels x 38 categories) each requiring
50 GB of memory during its building process. Since most
queries are performed within a specific category, usually only
60 cluster trees are searched per query.

The cluster trees are represented by arrays, which contain
information such as the number of elements each cluster
node has, the average signature vector of each cluster node,
and which cluster is the right/left child of every node. A
50,000 signature vector cluster tree needs around 25MB of
memory (or storage space). Based on the simplicity of these
data structures and their relatively small sizes, the trees are
serialized to binary arrays. These arrays can then be stored in
the file system or in a database.

IV. A FRAMEWORK FOR IMAGE BASED SEARCH OF
HANDWRITTEN CONTENT

The image based search discussed in previous sections is
only one part of the proposed method for providing searchable
access to archives of handwritten forms. While Word Spotting
provides automated low-cost searchable image-based access to
the archive information, it is not perfect. Here, the image-based
search is supplemented with both active and passive crowd-
sourcing. Specifically, as users utilize the system they will
improve its search capabilities. While the active crowdsourcing
through a reCAPTCHA-like [25] step is fairly straight forward,
we focus on passive crowdsourcing, where users are unaware
of their contributions to the system. Potential transcriptions
are obtained through a Cursive Text Panel interface, which
allows the users to type queries rendered with fonts that look
like handwriting or directly draw the query as handwritten
text with the mouse or hand (see Figure 3). Since the query
input is an integral part of the search procedure regardless
of the acquiring of transcriptions, this crowdsourcing element
is unobtrusive and transparent to the user. Once the text is

obtained from the panel, it will be associated with suitable
entries in the archive’s data based on the user’s usage of the
system.

The web interface, written with the Google Web Toolkit
(GWT), provides the users with access to all the functionalities
outlined so far. In the following subsections we describe the
web front end, the crowdsourcing strategy and address the
system’s ease of use in terms of finding data and carrying out
searches, the presentation of results to the user, the system’s
design so to be robust and fast, and how to make the system
maintainable and flexible for possible use with new datasets.

A. Web Front End

The web front end was developed using the Google Web
Toolkit, the Apache Tomcat web server, and an HTML5 canvas
element. All information is stored in a MongoDB database 1.

As described before, users are allowed to query the system
from the web interface in two ways. By default a text box is
presented where the user can type a string to search for. Since
an image-based search approach is used in the system, the
query must be converted to an image containing handwritten
text. When the user clicks on the search button, the contents
of the text box are sent to the server using a simple Ajax call
against a Search Service implemented as a Java servlet. There
the entered text is rendered in ”Rage Italic”, a handwriting-
like font. Optionally, the user can use the computer’s mouse
to draw on the HTML5 canvas the text to be searched. The
user should draw the text in cursive handwriting style since
the resulting image will be saved in the server and used as the
query to the system. (See Figure 3)

Prior to submitting their query, the users are allowed to
select which columns of the Census forms they wish to search.
The users are warned that more columns entail more indices
and thus require more time. Once a query is submitted and
saved in the server, its signature vector is computed on the
fly. The search can be performed both linearly, i.e. comparing
the query against every element in the database, or through
the cluster trees computed during the pre-processing.

In the linear search, the query’s signature vector is compared
using Euclidean distance to all elements contained in the
columns being searched. The MongoDB java drivers and
server are optimized for this kind of query, with all feature
vectors written to disk in a sequential manner. Nevertheless,
this approach proved to be too slow when dealing with very
large collections and thus the clustering proved essential to the
system’s success. In the cluster-based search, Java cluster tree
objects for the chosen columns are created in memory from
the bytes stored in the database. The cluster trees are then
queried and return a list of possible matches, i.e. the contents
of the final cluster in each cluster tree searched, identified by
their MongoDB ids. The results from the query of every cluster
tree are merged and a linear search is performed comparing the
query against all the resulting feature vectors using Euclidean
distance as metric.

1http://www.mongodb.org



Figure 3. The main page of the 1930 Census portal. The interface provides two types of search inputs, plain text and drawing. Top left: A
user types in a query word within the text box. This entered text is rendered on the server using a font that mimics handwriting. An image
generated from this rendered text is used as the query image for the Word Spotting. Top right: A user uses the mouse to write the text to be
searched for; the handwritten text results in an image that will be used as the query image for Word Spotting. Bottom left: Search options
including the type of search procedure to choose among linear search, cluster search and previous users’ results.Bottom right: Partial results
returned for a search on the term ’North Carolina’ using the text interface including statistics about each item retrieved.

Finally, the top N closest matching cell images, determined
via the smallest Euclidean distances, are returned. Each result
is visualized on the page with information about its reel,
form, row and column numbers shown above the image of
the cell entry and the Euclidean distance between the query
and the cell is shown below it. A user can then scroll through
these results and click on any of them to view additional
information, such as the entire form with the relevant row
highlighted as well as metadata associated with the form. The
high resolution images are presented as image pyramids [21]
through Microsoft’s SeaDragon interface to allow for efficient
viewing over the web. These image pyramids are generated
on demand causing the first user requesting a specific form to
wait for its pyramid to be constructed. The resulting pyramid is
cached however so that future viewers of the form will be able
to view it instantly. The image pyramid creation was observed
to take roughly ten seconds.

B. System Scalability

The image processing algorithms involved in this framework
require a great deal of CPU resources. Fortunately, as noted

before, the majority of this computation can be carried out
a single time as a pre-processing step before the system
goes live. In addition, this pre-processing can be carried out
within and take advantage of high performance computing
environments since the segmentation and signature extraction
pre-processing steps are both naively parallelizable. In other
words, these tasks which act on individual images or sub-
images respectively are independent of one another and, thus,
can be potentially executed simultaneously. The final pre-
processing step, the indexing of the signatures into cluster
trees, is not parallelizable if the entire database of cell signa-
tures is to be combined into one single cluster tree. However,
the computational and memory costs for clustering a large
collection would be so high, that would be deemed impractical.
Instead, as mentioned previously, the database is split into
multiple indexed collections according to state, column, and
reel. The building of an index for each of these smaller
collections can be done independently from one another and
therefore can be processed in parallel as well.

When dealing with archives, big or small, which could
take a considerable amount of time to pre-process and have



invaluable information, some kind of system backup is nec-
essary; otherwise, in case of hardware failure, the dataset
would have to be reprocessed and the additional information
contained in the system, such as information harvested through
the crowdsourcing element, would be lost. MongoDB provides
replication, high availability, and auto-sharding out of the box.
This becomes fundamental when scaling out the system to deal
with even larger collections. In addition to the metadata, all
the cell files are handled by MongoDB, which by using its
sharding capabilities transparently distributes the data among
multiple nodes. Since the sharding includes replication of the
data on multiple nodes, it has the advantage of functioning as
failsafe in case one node goes down.

The no-schema nature of MongoDB proves itself much
helpful when expanding the system. It can be used to add
new feature descriptors to the image cells or even extend the
system to support data contained in new forms of similar or
different formats. If a form of different format is added to the
collection, the this schema-less property is even more useful
since the metadata files will likely contain different sets of
fields.

Finally, when scaling from a small collection to a larger one,
the query time for linear search will naturally increase signifi-
cantly. Here, MongoDB provides the advantage of storing data
into collections; each collection is a list of memory-mapped
files on disk in which individual documents are stored one
after the other. Queries are optimized in such a way that a
client (for example the front end web application) opens a
cursor on the server and results are streamed to the client in a
batch of a predefined size. Since the files are memory-mapped
and the access is sequential, browsing large collections, if not
fast, can be done in a reasonable amount of time.

C. Passive Crowd Sourcing

One of the driving motivations for using the Word Spotting
methodology was that by returning the top N closest matches,
a human is kept in the loop since any user must look
through the presented results to find the desired matches. This,
combined with the two query interfaces provided, allow for a
passive crowd sourcing element which is aimed to improve
search results as the system is used. Usually, active crowd
sourcing, such as the popular reCAPTCHA [25], present the
user with something unrelated to the site being visited. As
such, it is seen as a necessary inconvenience obstructing the
access to what the user is truly interested in. For example, in
the case of reCAPTCHA two scrambled words are presented
to a user to type in. One word is computer generated and used
to verify whether the user is a computer script attempting to
abuse the system. The other word however is a difficult one
to be recognized by OCR, typically extracted from a book.
The user, not knowing which is which, types in both words
correctly so to proceed, and by doing so helps to OCR a book.
Passive crowd sourcing, on the other hand, is designed in such
a way that it is invisible to the user.

In our system, the text box widget offers the means to
conduct passive crowd sourcing and gain human transcriptions

of text. When the user types in text, the text entered is stored
and later associated with the results that the user clicks on.
The underlying assumption is that users will tend to click on
results that match their query. Regardless, the system does
not rely on the behaviour of a single user, but records this
information for all users. When multiple users entering the
same text selected the same image, the system assumes with
some level of confidence that the entered text is the same as
the one displayed in the image.

In addition to the text entries, the mouse drawn entries also
allow for this type of passive crowd sourcing. By allowing
the user to draw the text with their mouse, the native offline
handwritten recognition problem (based on pixels) is converted
to an online handwritten recognition problem (based on point
paths) [1]. A significantly more manageable problem than the
offline one, transcriptions to the queries can be obtained with
roughly 80% accuracy and still have this text later associated
with results.

Employing these two passive crowdsourcing approaches, the
system provides searchable access to handwritten image data
while also allowing the system to improve through usage.

D. Framework Adaptability

Some collections cannot be completely transcribed by hand
for many reasons, such as lack of funds or personnel. The
presented framework, being easily adaptable, could be poten-
tially used to provide searchable access to archives that would
otherwise remain inaccessible. Large personal collections, for
example, are less likely to be transcribed for lack of public
interest. This framework nevertheless offers interesting possi-
bilities for this kind of collections. For example, drawing the
query to be searched is a useful feature when dealing with
personal archives. It allows the users to enter queries using
their actual handwriting which would be extremely valuable if
they wanted to find something they personally wrote in a large
archive of scanned documents. Examples might include collec-
tions of scientific notebooks, letters, envelopes/postcards, and
checks. Even within the US Census data, searching based on
handwriting could be used to identify the individual Census
takers if this information was no longer available.

Currently, this open source framework can be easily adapted
to be used with any kind of form collections. Apart from
supplying new form templates to be used in the pre-processing
steps, no changes are required. This framework could also
be adapted to collections of free-style text. In this case, no
templates would be available and the document segmentation
could be performed using existing image processing algo-
rithms ( [26, 27], for example). All other subsequent pre-
processing steps and system usage would remain the same.

V. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed framework
both in terms of accuracy of the Word Spotting as well as
computational requirements on HPC resources.



A. Word Spotting

We evaluate the performance of the proposed Word Spotting
framework on a small annotated dataset of Champaign County
from the 1930s Census. The availability of 10,000 annotated
cell images divided into four different categories or columns:
marital status, gender, home state and yes/no; allowed the
execution of several experiments that contributed to a better
understanding of the data set and as an evaluation of the Word
Spotting.

In order to verify whether the extracted signatures were
indeed representative of the word images, each image in
the data set was used as a query to be matched to similar
images from the collection. The queried image was excluded
from the search space. Two search methods were employed:
linear search and hierarchical cluster search. Comparing the
query’s signature against other images’ signatures produces a
ranked list of retrieved images based on Euclidean distance.
A successful match was defined as one that returns a word
image with the same label as the query.

For linear search, the accuracies were 65%, 61% and 59%
for the top 1, 5, and 10 matches respectively. The cluster
search, where elements were clustered based on their cat-
egories, resulted in 75%, 60% and 56%. The precision of
the results seems compatible with the ranking of the match,
meaning that the average precision of the first ranked match is
higher than the precision of the second ranked matched image
and so on. Gradual results for sets containing between 2000
and 1000 images are shown in Table 1. Interesting enough,
when testing with different sizes of datasets, the hierarchical
search seems to improve the accuracy of the first ranked image
independently of the dataset size, this advantage is true up to
the first four ranked images, but not shown however due to
space constraints. In general, the results indicate that similar
images can indeed be found based on their signature vectors
and that the usage of the cluster trees do not significantly
impair the results received.

As described before, the hierarchical search performed over
a cluster tree aims to reduce the searching time. If the cluster
trees were balanced, which we cannot guarantee due to the
clustering process, the search time would be logarithmic
instead of linearly proportional to the set size. Indeed, our
results for the annotated dataset show that the cluster tree
height will have an upper-bound of 2 ∗ logN and the search
time is logarithmic while the linear search time grows with
N (See Figure 4). Nevertheless, there is the question of
whether the best possible match to the query is indeed in
the final cluster reached by the search procedure. In order
to investigate this issue, all cell images were used to query
the system, but this time the query was not removed from the
possible result set. In successful trials, the final cluster reached
contained the original image; otherwise, the trial was classified
as unsuccessful. When using the complete dataset (1000 cell
images), a 53% accuracy was obtained. Detailed results can
be seen in Table 1.

These results establish that the best possible match to

Table 1. Search accuracy results. The data set was composed by
images from 4 different categories. The results in columns 1, 5
and 10 represent the average accuracy of the 1st, 5th, and 10th
highest-ranked matching images, respectively. A correct match image
is defined as one with the same transcription as the query. The results
in column SM show the accuracies for the self-matching task, where
a correct match occurs when the queried cell is present in the final
cluster retrieved. The methods used were: (a) linear search, and
(b) hierarchical cluster search with different categories composing
different cluster trees.

Figure 4. Average search time for linear and cluster search methods.
Notice how the average linear search time grows linearly as N grows,
while the search in the clustered procedure is logarithmic.

a query image is not always present in the final retrieved
cluster. The hierarchical search clearly loses a significant
amount of relevant results during the cluster tree descent.
Although considerable, this loss is not surprising considering
the significant reduction of the search space. Nevertheless, the
hierarchical cluster search seems as the most practical option
considering the substantial speed-up of the searching process
and its general accuracy rates (which are similar to the linear
search results).

B. HPC Benchmarking

The three pre-processing steps of the framework were
benchmarked on Steele at University of Purdue and NCSA’s
Ember at the University of Illinois. Both systems are very
different in architecture and capabilities. The Steele cluster
consists of around 900 systems with 8 core processors and
between 16 GB and 32 GB of memory. When submitting a
job on Steele, it is queued based on the required resources;
thus we limited ourselves to 16 GB of memory usage on this



system. Ember is a shared memory system that consists of 4
systems each with 384 cores and 2 TB of memory. Unlike
Steele, the resources at Ember are split in groups of 6 cores
and 30 GB of memory. The process used 12 cores and 60
GB, the equivalent to a single node board. Both systems have
some local disk space that can be accessed as well as a large
parallel file system which hosts the data. The results described
here focus specifically on the state of North Carolina which
consists of approximately 60 thousand images divided in 60
reels which were processed on Ember and on the District of
Columbia consisting of 14 reels mainly processed on Steele.

The segmentation computation requires a little less than 3
GB of memory per image that needs to be processed. Both
Steele and Ember were used for the segmentation step. In
the case of Steele, the jobs were split into smaller sub-jobs
each running 5 threads and segmenting only 250 images,
which limits the computation time and guarantees access to
the system’s faster queue. When using Ember, a single reel
(around one thousand images) was processed per job using
12 threads and requesting a total of 8 hours of runtime. The
segmentation of a reel took between 5 and 6 hours on Steele
and between 1 and 5 hours on Ember. The average time to
process the one single image is 132 seconds on Ember and 91
seconds on Steele.

The next pre-processing step is the signature extraction,
which was also executed both on Ember and Steele. When
using Ember, a single reel was processed per job; on Steele,
the jobs were once more divided into sub-jobs of 250 images
each. Again, 12 and 5 threads per job were used in Ember and
Steele, respectively. The processing took per reel between 1.5
hours and 5 hours on Ember and between 4 and 9.5 hours on
Steele. Some of the timing difference can be explained due to
overhead of transferring the resulting cell images from Steele
to NCSA. An average of 151 seconds was needed to process
one image on Ember; the average for Steele was 145 seconds
per image.

The final, and more costly, pre-processing step is the in-
dexing of the signature vectors. Due to the high amount of
memory needed during the clustering process, this third pre-
processing step run solely on Ember. Each of the resulting
2280 North Carolina’s cluster trees was processed on average
in 3 hours; an average of 123 hours were required per reel and
a total of 7401 hours was needed to create the complete index
for the state’s data. Several CPUs needed to be allocated to
the indexing step due to the large amount of memory required.
Currently, the indexing computation utilizes one single CPU.
Some optimizations can be done to exploit these idle cores. For
example, it is possible to create a pipeline where segmentation
and signature extraction jobs can be run simultaneously with
the resources requested for an indexing job. In this case, the
time required for the first two pre-processing steps would be
assimilated in the total time of the much time consuming
indexing processing. Another significant possible improvement
would be to modify the implementation of the Hierarchical
Agglomerative Clustering such as to utilize some of the idle
cores during the clustering process to ’clean’ the priority queue

that controls which clusters should be merged.

VI. CONCLUSIONS

The need for automated search solutions for digital archives
of handwritten documents will only grow as more paper
archives go through the digitalization process. Most large
collections among the existing centuries of handwritten form
archives do not have the wide appeal needed to attract the
investment capital required for manual transcription. Nonethe-
less, these legacy collections can often offer valuable historical
data that can be used in a variety eScience efforts [28] if their
contents were accessible within the resulting scanned image
data. The reported open source framework can be utilized to
offer searchable access to other form collections provided very
few modifications such as compatible form templates. The
system’s code consists of the pre-processing code to be run on
HPC resources as well as a GWT front end for web access.
Though we discussed largely human access of such data in
terms of a search engine like interface, automated access is
also possible for applications that would attempt to mine this
data or gather statistics. The benchmarking performed on the
state of North Carolina and the District of Columbia’s 1930
Census data helps to estimate the amount of time needed to
process the entire 1930 Census collection. Approximately 0.1
days of computation would be required per reel, with roughly
a total of 288 days to process the 2878 reels of the entire
1930 Census. By incorporating the pipeline described in the
previous section for the idle CPU’s during indexing, the time
estimated for the complete 1930 Census collection would be a
shorter 213 days, assuming the other two pre-processing steps
can execute within the unused resources of the indexing.
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