
Digitization and Search: A Non-Traditional Use of
HPC

Liana Diesendruck, Luigi Marini, Rob Kooper, Mayank Kejriwal, Kenton McHenry
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign
Email: {ldiesend, lmarini, kooper, kejriwa1, mchenry}@illinois.edu

Abstract—Automated search of handwritten content is a highly
interesting and applicative subject, especially important today
due to the public availability of large digitized document col-
lections. We describe our efforts with the National Archives
(NARA) to provide searchable access to the 1940 Census data
and discuss the HPC resources needed to implement the suggested
framework. Instead of trying to recognize the handwritten text,
a still very difficult task, we use a content based image retrieval
technique known as Word Spotting. Through this paradigm, the
system is queried by the use of handwritten text images instead
of ASCII text and ranked groups of similar looking images are
presented to the user. A significant amount of computing power
is needed to accomplish the pre-processing of the data so to make
this search capability available on an archive. The required pre-
processing steps and the open source framework developed are
discussed focusing specifically on HPC considerations that are
relevant when preparing to provide searchable access to sizeable
collections, such as the US Census. Having processed the state
of North Carolina from the 1930 Census using 98,000 SUs we
estimate the processing of the entire country for 1940 could
require up to 2.5 million SUs. The proposed framework can
be used to provide an alternative to costly manual transcriptions
for a variety of digitized paper archives.

I. INTRODUCTION

Large digital archives of handwritten scanned documents,
which might contain terabytes of data spanning millions of
images, currently possess no viable or practical means of
searchable access. Searching capabilities are fundamental for
providing genuine access to the digitized data such as the
1940 Census forms released by the US Census Bureau and
the National Archives and Records Administration (NARA), a
collection containing 3.25 million images and approximately
18 terabytes of raw image data. Collections such as this are
valuable historical data sources that could potentially be used
in a variety of eScience efforts if the contained images of
handwritten data were searchable. Census data, for example,
can offer insights into climate change and population move-
ment a century or more ago. Manual transcription of the text
is currently the only means of providing searchable access to
handwritten data collected by multiple authors. This process,
however, involves thousands of people taking months of time
and high costs to complete. Here, we focus on developing an
automated, low cost, and scalable alternative for providing the
desired searchable capabilities.

Handwritten text recognition [1] techniques usually lever-
age constraints, such as a known language model [2, 3] or
very restricted vocabularies [4] and structures [5], that are

unavailable when dealing with the Census forms. Therefore, a
content-based image retrieval [6, 7], where text recognition is
not necessary, was considered. Here, partially using the Word
Spotting methodology [8, 9, 10], word images are described
by signature vectors containing features of the image.

Usually, the images’ feature vectors would be divided
into clusters and ASCII search would be accomplished by
annotating the most interesting clusters and using them as
indices for the searching procedure. However, even without
considering the difficulties of estimating the number of clusters
needed in the case of the Census dataset, this approach cannot
be used here since searchable access is needed not only for
popular terms but also for unusual or obscure words, such
as less common private and family names or professions. As
an alternative to this labeling approach, the described system
is queried by images from which feature vectors are also
extracted. A naive searching procedure can be implemented
by using Euclidean distance to compare the query vector to
each of the signature vectors in the database. Nevertheless, this
approach is impractical for sizeable collections such as the US
Census and some sort of index is still necessary. Therefore,
hierarchies between the signature vectors (and consequently
the images) are defined and used as an alternative index during
the searching process. The hierarchical structure used here is
a binary tree-like structure where each tree node represents a
cluster of signature vectors. These cluster trees are built based
on the merging steps, or dendrogram, of the vectors’ clustering
using Hierarchical Agglomerative Clustering [11]. Finally,
when a query image is submitted to the system, whether or not
these cluster trees are used to speed-up the search, multiple
results consisting of its top matches are returned. Although
the user still needs to search within these results, which might
include bad matches, the search is downscaled from billions
to a small number of images. The human involvement in this
final stage of the search is then utilized to improve future query
results through a passive crowd sourcing element.

High Performance Computing (HPC) resources are used to
handle three fundamental pre-processing steps that are needed
to build the proposed framework but are computationally
expensive (see Figure 1). In the first step, all cells have to
be extracted from the form images based on their columns
and rows. Each form of the 1930 Census, our test collection,
contains 1900 cells producing roughly 7 billion cell sub-
images for the entire collection. Next, a 30-dimensional feature



Figure 1. A flow chart of the 3 pre-processing steps required to
provide the image based search on the 1940 Census data. 1: The
spreadsheet-like Census forms are segmented into individual cells.
2: A numerical signature is constructed to represent the handwritten
contents of each cell. 3: A hierarchical index is constructed over the
cell signatures.

vector is extracted from each cell image. Then, in the final pre-
processing step, the signature vectors have to be clustered so
that the searchable cluster trees can be built.

In the following sections, the form segmentation and feature
extraction pre-processing steps are briefly described. Next, the
signature indexing pre-processing step is discussed including
a description of different implementation approaches to the
Hierarchical Agglomerative Clustering employed there. This
special focus is given to the indexing procedure since it is the
most computationally demanding of all pre-processing steps,
resulting on the bulk of the pre-processing required time.
Finally, the proposed framework is presented and experimental
results are discussed. A detailed account of the first two
pre-processing steps and the entire framework can be found
in [12].

II. FORM SEGMENTATION

In the first pre-processing step, each form must be seg-
mented into sub-images of the forms’ cells. Since the layout
of the Census forms from both 1930’s and 1940’s resem-
bles a grid, the segmentation is achieved by first correctly
detecting the lines that delimit the rows and columns. Prior
to the detection of the lines, physical imperfections, such as
tears, smudges, and bleed-throughs, and slight rotations in
the images are dealt with. Previous work in form segmen-
tation [13, 14] was adapted here paying particular attention
to the resource demands required in terms of processing the
3.6 million high resolution (20-60 megapixel) Census form
images.

After binarizing the image, a morphological thinning pro-
cess is applied to erode the white regions around the forms.
A following thinning process [15] is applied to reduce the
thickness of all ink elements (lines and handwritten text alike)

avoiding the creation of new artifacts [16]. Next, the image
is rotated around its center by an angle estimated from the
long lines detected in the image through a costly Hough
transform [17]. Then, most of the desired form lines are
detected by summing the amount of ink pixels along the
horizontal and vertical axis of the rotated image, although it
still results in extra and missing form lines (see Figure 2).
With the lines detected, the process performs a search for the
best alignment of the lines found in the image to the ones
in a template form, which was constructed by hand labeling
all horizontal and vertical form lines from one single image
chosen among the entire collection. Although computationally
costly, the processing time can be improved by matching
horizontal and vertical lines separately, thus dealing with two
1-dimensional problems instead of a harder 2-dimensional one.
At this point, the matched lines are used to delineate the
position of form cells (see Figure 2), which are further refined
by a small-scale version of the previous steps. Finally, the cell
images are extracted and stored in the database as slices of
the original image.

III. SIGNATURE EXTRACTION

In this pre-processing step, the relevant features of the hand-
written words are extracted from each of the cell images and
the Word Spotting vectors are created. Before the extraction,
however, some image refinement procedures are performed to
reduce artifacts and increase the quality of the feature vectors.
The cells are scaled to a fixed canonical height and binarized.
Then, small isolated areas of ink pixels, which are not part
of the text but are remains of the cell’s border, are removed.
Finally, the remaining ink pixels are centered within the cell’s
image and three features (upper, lower and transition profiles)
described by Rath et al. [10] are extracted from the cell’s
content. The upper profile is found by scanning vertically the
cell image until getting to the first ink pixel of each vertical
pixel line. The bottom profile is found by a similar process
starting at the bottom of the sub-image. The projection profile
is calculated by summing the pixel values along the vertical
axis of the cell image. These features are made invariant to
some styling discrepancies by applying a cosine transform to
each of them (similarly to the Fourier transform used in [10])
and using their first ten coefficients to compose the signature
vectors. This not only contributes to a measure of robustness
under handwriting variations, but also guarantees that every
feature vector will have the exact same length.

IV. SIGNATURE INDEXING

The Census data is composed of 7 billion cell images or
units of information. A linear search, i.e. comparing each
query to all 7 billion cells in the system, would clearly perform
poorly. A very conservative estimate of 1 millisecond per
comparison shows that more than 2 months would be needed
just to carry out all the comparisons required for one single
query. Performing smart queries such as concentrating in one
specific column or state is a way of reducing the search
overhead, but it is clearly not enough if the response time



Figure 2. Left: An example 1930 Census form image containing gray values between 0 (black) and 1 (white). Center: The form lines found
within the rotation corrected image. Note the existence of missing form lines as well as non-form lines at the borders of the form. Right:
The form lines obtained by matching a template to the lines obtained from the rotation-corrected image.

to a query should be reasonable. It is evident that some kind
of index of the feature vectors is needed to speed up the search
procedure.

In order to generate the desired index, a Hierarchical Ag-
glomerative Clustering [11] is performed clustering the feature
vectors in a bottom-up procedure. It starts by calculating the
distance between every pair of elements (in our case signature
vectors) in the system and storing it in the appropriate data
structures, the most basic one being a distance matrix. Every
vector is represented by a cluster in the beginning of the
clustering process. Then the most similar pair of clusters is
merged. Next, the distance between the resulting clusters and
all remaining clusters in the system have to be calculated.
These two last steps are repeated until one single cluster
remains. The merging steps of the clustering process are used
to build a binary tree of clusters, or cluster tree, where each
cluster is composed of signature vectors that were grouped
together by the algorithm and is represented by an average
signature vector. This cluster tree can then be used to improve
the searching time; each query vector is compared to the aver-
age cluster signature vectors, descending the cluster tree until
arriving at a cluster of suitable size. One of the advantages of
this approach is that the size of the desired cluster is flexible
and can be set and reset without having to recompute the entire
hierarchy. Once the final cluster is reached, the query vector is
compared to all the signatures contained in the chosen cluster
in a linear manner.

The key to the considerable reduction of scale is being
able to build a cluster tree that is as balanced as possible,
which means that at each comparison during the descent of the
three half of the remaining signatures are eliminated from the
search space. From all Hierarchical Agglomerative Clustering
linkages tested, the Complete Linkage generated the most
balanced trees which also contained the most homogeneous
clusters. Therefore, this was the linkage approach chosen
despite of being very resource demanding. In the Complete
Linkage approach, the distance between clusters is defined by
the most dissimilar pair of vectors between them. Namely, the
distance between clusters C1 and C2 is defined by the highest
distance between any pair of vectors vi ∈ C1 and vj ∈ C2.

Clearly, the most influential computation of the algorithm

in terms of time complexity is identifying the next pair of
clusters that should be merged. For example, if no information
about the distances between the vectors is stored, e.g. the
distance matrix is not used, this step would take O(n2)
time for a single iteration or O(n3) for the entire execution.
When two clusters are merged, the distance between the
resulting clusters and all remaining clusters in the system
have to be recalculated. In the particular case of Complete
Linkage, the distance between the cluster formed by merging
C1 and C2 and any other cluster C3 is easily computed
as max(distance(C1, C3), distance(C2, C3)). Still, updating
the distances in the relevant data structures throughout the run
will take O(n2).

Several different versions of the algorithm were imple-
mented in order to find the best fit to the available HPC
resources. In all of the implemented versions, once clusters
Ci and Cj are merged, the new cluster is represented by
Cmax(i,j). The priority queue used here was implemented
using a binary min heap which ensures that, if m elements
are currently stored, adding and removing elements have an
O(log(m)) time complexity.

The basic version (A1), which was used in the HPC bench-
marking, is a single-threaded algorithm that uses a matrix to
hold the distances between all clusters and a single priority
queue. The priority queue is initialized with n · (n − 1)/2
elements, each representing a pair of clusters and the distance
between them, which is used as the priority of the element. If
the priority queue is kept up-to-date, meaning that after each
merge the relevant elements were removed from it and new
elements were added to represent the merging cost between the
newly created cluster and all other clusters in the system, then
the first element popped from the priority queue is guaranteed
to represent the next pair of clusters that should be merged. If
not, the element popped needs to be evaluated. If the element
is up-to-date, meaning that since it was inserted in the priority
queue the clusters it represents were not merged with other
clusters, the element is guaranteed to represent the correct
merge to be performed. If the element is not up-to-date and at
least one of the clusters was already eliminated, the element
is discarded and a new one is popped from the priority queue.
And, finally, if both clusters still exist, the element priority is



updated with the new distance between the clusters and the
element is re-inserted into the priority queue. One advantage
of this approach is that there is no need to keep track of
the elements’ positions in the priority queue so to be able
to perform the updates in a reasonable time. Algorithm A1
uses this ’lazy’ approach to the updating of the priority queue
since it might reduce considerably the amount of updates
needed. Overall, algorithm A1 has O(n2log(n2)) time and
O(n2) memory complexities.

Algorithm A2, also single-threaded, uses the same ’lazy’
approach to the updating of the priority queue. However,
instead of having one single priority queue, it holds one
priority queue for each row of the distance matrix, which
means that once a cluster is eliminated by the merging process,
the respective priority queue can be deleted, considerably
speeding-up the process. Since there are n priority queues,
only the priority queue with the smallest distance element in
the top is popped. The popped element has to be evaluated as
described in the previous paragraph. The total time complexity
of this algorithm is O(n2log(n)).

Algorithm A3, multi-threaded, takes advantage of idle cores
in the system by creating one priority queue for each and
distributing the distances and their respective pairs of clusters
among them. This implementation guarantees that the main
thread can only observe the top element of any priority queue
once the element is up-to-date. Since there is a thread taking
care of each priority queue, once the top element is up-to-date
it can travel down the priority queue performing additional
updating until changes in the distances are made and the
process has to start again.

Any of the previous algorithms can be used to create the
cluster trees depending on the amount of available resources.
The resulting cluster trees are stored in arrays which contain all
information necessary to search the tree such as the number
of elements of each cluster node, indexes to their children
nodes, and the average signature vector representing each
cluster node. The simplicity of these data structures and their
relatively small sizes, e.g. a 50,000 vector cluster tree occupies
25 MB of storage or memory space, allow the trees to be
serialized to binary arrays and easily stored in the file system
or in a database.

V. A FRAMEWORK FOR IMAGE BASED SEARCH OF
HANDWRITTEN CONTENT

We have developed the code for the above pre-processing
steps and provide it as an open source framework 1. Although
the segmentation provided is designed for spreadsheet like
forms, the framework could be adapted to collections of free-
style text by using existing image processing algorithms (such
as [18, 19]) instead of templates to segment the documents.
All other subsequent pre-processing steps and system usage
would remain the same.

A web interface written in the Google Web Toolkit (GWT)
is also provided. This web interface allows users to submit a

1https://isda.ncsa.illinois.edu/svn/census/trunk/

query to the system by either typing a string, which will be
rendered by the server in a handwriting-like font prior to the
search, or by drawing text in handwritten style. Once a query
is submitted, the top N closest matching images, determined
via the Word Spotting comparisons, are returned. A user can
then scroll through these results and click on any of them
to view additional information, such as the entire form with
the relevant row highlighted as well as metadata associated
with the form. The high resolution images are presented as
image pyramids [16] through Microsoft’s SeaDragon interface
to allow for efficient viewing over the web. These image
pyramids are generated on demand causing the first user
requesting a specific form to wait for its pyramid to be
constructed. The resulting pyramid is cached however so that
future viewers of the form will be able to view it instantly.
We have observed that image pyramid creation takes roughly
10 seconds.

One of the driving motivations for using the Word Spotting
methodology was that, by returning the top N closest matches,
a human is kept in the loop. Since any user must look
through the presented results to find the desired matches,
human transcriptions of text can be acquired with an un-
obtrusive passive crowdsourcing approach. Transcriptions of
drawn queries, which can be acquired by methods of online
handwritten recognition [1] with roughly 80% accuracy, and
inputted texts are stored and later associated with the results
that the user clicks on. The underlying assumption is that users
will tend to click on results that match their query. Regardless,
the system does not rely on the behavior of a single user, but
records this information for all users. When multiple users
entering the same text selected the same image, the system
assumes with some level of confidence that the entered text
is the same as the one displayed in the image. Thus, as users
utilize the system it will improve its search capabilities.

VI. EXPERIMENTAL RESULTS

In the following subsections, we analyze different versions
of the Complete Linkage algorithm in terms of time and
memory requirements and suitability to the HPC resources
available to us, and the general computational requirements on
HPC resources. For detailed results about the quality of the
Word Spotting approach with and without the use of cluster
trees, see [12].

A. Complete Linkage Clustering

NCSA’s Ember was used to test the different implemen-
tations of the clustering method. Twelve CPUs with the
combined memory of 60GB were allocated for these tests. An
entire reel column containing 56500 cell images was clustered.
A typical timing result can be seen on 3. All implementations
presented here take advantage of the multiple available cores
during the building of the matrix. Algorithms A2 and A3 also
use them to initialize the priority queues required although
average timing is not much improved compared to the single-
threaded A1. Thus, until the clustering itself starts, the differ-
ence between them is irrelevant.



Figure 3. Typical timing for merging clusters, in intervals of 1,000,
as a function of the amount of clusters left in the system. A1: the
single-threaded basic algorithm which uses one single priority queue;
clustering time continues up to 4500. A2: also single threaded, uses
n priority queues. A3: both versions are multi-threaded with the
same amount of priority queues as the amount of available cores.
A3.1 implements a naive approach where only the top element in
each queue is kept up-to-date, while in A3.2, once the top element
is up-to-date, the thread goes on to update the following elements in
the queue. The clustering time for A3.1 continues to rise up to 2200
seconds in the last intervals.

In terms of required memory, A1 was the most expensive
using 45GB out of the 60GB available. Algorithm A2 required
roughly 41GB of memory, while both A3.1 and A3.2 used
around 37GB. For A1 and A3.1, the results indicate that most
of time required by the clustering process is concentrated
towards its end. Nevertheless, A3.2 shows that this trend can
be avoided by partially updating the priority queues. In regards
to the time complexity, algorithm A2 has the best performance
even if not considerably better than A3.2. Overall, A3.2 had
the shortest wall-time (around 50 minutes) due to a slight
faster building of the priority queues in comparison to A2
(54 minutes wall-time).

While both algorithms A2 and A3.2 are promising, A3.2
has the advantage of not only requiring less memory but also
being able to expand and use any amount of CPUs available. In
systems limited in memory but with considerable amounts of
free cores, this could make a strong impact in the overall time
required for the indexing pre-processing step. On the other
hand, algorithm A2 will achieve the best performance of all
other implementations when running on a high-memory, low
amount of CPUs environment.

Non-lazy implementations of all described approaches are
also included in the available code, however managing the
data structures required in order to be able to quickly update
the priority queue(s) and updating elements that will never
be reached make them impractical in comparison to the
implementations highlighted here.

B. HPC Benchmarking

The three pre-processing steps of the framework were
benchmarked on Steele at the University of Purdue and
NCSA’s Ember at the University of Illinois. Both systems
are very different in architecture and capabilities. The Steele
cluster consists of around 900 systems with 8 core processors
and between 16GB and 32GB of memory. When submitting
a job on Steele, it is queued based on the required resources;
thus we limited ourselves to 16GB of memory usage on this
system. Ember is a shared memory system that consists of
4 systems each with 384 cores and 2TB of memory. Unlike
Steele the resources at ember are split in groups of 6 cores and
30GB of memory. We used in our process 12 cores and 60GB,
the equivalent to a single node board. Each of the systems has
some local disk space that can be accessed as well as a large
parallel file system which hosts the data.

The results described here focus specifically on the state of
North Carolina which consists of approximately 60 thousand
images divided in 60 reels which were processed on Ember
and the District of Columbia consisting of 14 reels mainly
processed on Steele.

1) Form segmentation: The segmentation computation re-
quires a little less than 3GB of memory per image that needs
to be processed. Both Steele and Ember were used for the
segmentation step. In the case of Steele, the jobs were split into
smaller sub-jobs each running 5 threads and segmenting only
250 images, which limits the computation time and guarantees
access to the system’s faster queue. When using Ember, a
single reel (around one thousand images) was processed per
job using 12 threads and requesting a total of 8 hours of
runtime. Each reel’s segmentation took between 5 and 6 hours
on Steele and between 1 and 5 hours on Ember. The average
time to process one single image is 132 seconds on Ember and
91 seconds on Steele. A total of 2477 SUs was used for the
segmentation of North Carolina’s forms while 606 SUs were
used for District of Columbia.

2) Signature Extraction: The process was executed both
on Ember and Steele. When using Ember, a single reel was
processed per job; on Steele, the jobs were once more divided
into sub-jobs of 250 images each. Again, 12 and 5 threads
per job were used in Ember and Steele, respectively. The
processing took between 1.5 hours and 5 hours on Ember
and between 4 and 9.5 hours on Steele. Some of the timing
difference can be explained due to overhead of transferring
the resulting sub-images from Steele to NCSA. An average
of 151 seconds was needed to process one image on Ember;
the average for Steele was 145 seconds per image. North
Carolina’s feature extraction step resulted in a total of 2840
SUs while the District of Columbia required 966 SUs.

3) Signature Indexing: Due to the high amount of memory
needed during the clustering process, this third pre-processing
step was run solely on Ember. Each of the 2280 North
Carolina’s cluster trees was processed on average in 3 hours
using algorithm A1; an average of 123 hours were required
per reel and a total of 7401 hours was needed to create the



complete index for the state’s data. This pre-processing step
required 88,816 SUs only for the state of North Carolina.

As described previously, many cores are available during the
indexing step due to the large amount of memory it requires.
Depending on the amount of idle cores and memory available
in the system, algorithms A2 and A3.2 can be used to improve
the running times. However, additional optimizations can be
performed to utilize the extra cores. A possible improvement
could be to create a pipeline to simultaneously run segmenta-
tion and signature extraction jobs with the resources requested
for an indexing job (using the single-threaded A2 algorithm),
assimilating the time required for the first two pre-processing
steps in the total time of the indexing step.

VII. CONCLUSIONS

The limited accessibility of simple scanned image archives
is a setback in a time when people and government are
enthusiastic about freedom of access to information. The
demand for searchable access to digital collections of hand-
written documents will rise as the public availability of such
collections grows. Nevertheless, most collections lack the
public appeal required to generate the funds needed for manual
content transcription. Alternatively, the proposed framework is
publicly available and can be used to provide the automated
search capabilities needed for public or private collections of
handwritten forms. The provided code contains all the pre-
processing steps, including the different implementations of
the clustering procedure, ready to be run on HPC resources.

Although the system starts providing access to the handwrit-
ten information by utilizing the Computer Vision techniques
described here, ideally, as more people use the system, tran-
scriptions based on human interaction will be acquired over
time through the passive crowd sourcing element. The system
will continuously improve and gradually shift from a solely
image based search to a hybrid of image and text based search.

The results of the North Carolina and District of Columbia
benchmarking indicate that the entire 1930 Census collection
could be processed in 288 days (around 0.1 days for each
one of the 2878 reels). Only by incorporating the improved
clustering algorithms, without taking into account the pipeline
proposed in the previous section, this number could be reduced
to a much faster 84 days.

Acknowledgments

This research has been funded through the National Science
Foundation Cooperative Agreement NSF OCI 05-25308 and
Cooperative Support Agreement NSF OCI 05-04064 by the
National Archives and Records Administration (NARA). This
work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Sci-
ence Foundation grant number OCI-1053575.

REFERENCES

[1] R. Plamondon and S. Srihari, “On-line and off-line
handwriting recogntion: A comprehensive survey,” IEEE

Transactions on Pattern Analysis and Machine Intelli-
gence, 2000.

[2] V. Lavrenko, T. Rath, and R. Manmatha, “Holistic word
recognition for handwritten historical documents,” Doc-
ument Image Analysis for Libraries, 2004.

[3] T. Rath, V. Lavrenko, and R. Manmatha, “A statistical ap-
proach to retrieving historical manuscript images without
recognition,” Technical Report, 2003.

[4] R. Milewski, V. Govindaraju, and A. Bhardwaj, “Au-
tomatic recognition of handwritten medical forms for
search engines,” International Journal on Document
Analysis and Recognition, 2009.

[5] S. Srihari, V. Govindaraju, and A. Shelihawat, “Inter-
pretation of handwritten addresses in us mailstream,”
Document Analysis and Recognition, 1993.

[6] R. Veltkamp and M. Tanase, “Content-based image re-
trieval systems: A survey,” 2000.

[7] R. Holley, “How good can it get? analyzing and im-
proving ocr accuracy in large scale historic newspaper
digitization programs,” D-Lib Magazine, 2009.

[8] R. Manmatha, C. Han, and E. Riseman, “Word spotting:
A new approach to indexing handwriting,” IEEE Confer-
ence on Computer Vision and Pattern Recognition, 1996.

[9] T. Rath and R. Manmatha, “Features for word spotting
in historical manuscripts,” International Conference on
Document Analysis and Recognition, 2003.

[10] ——, “A search engine for historical manuscript images,”
International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2004.

[11] W. Day and H. Edelsbrunner, “Efficient algorithms for
agglomerative hierarchical clustering methods,” Journal
of Classification, 1984.

[12] L. Diesendruck, L. Marini, R. Kooper, M. Kejriwal,
and K. McHenry, “A framework to access handwritten
information within large digitized paper collections,”
IEEE Conference on e-Science, 2012.

[13] R. Casey and D. Ferguson, “Intelligent forms process-
ing,” IBM Systems Journal, 1990.

[14] J. Liu, X. Ding, and Y. Wu, “Description and recogntion
of form and automated for data entry,” ICDAR, 1995.

[15] L. Lam and Y. Suen, “An evaluation of parallel thinning
algorithms for character recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1995.

[16] D. Forsyth and J. Ponce, “Computer vision and modern
approach,” Prentice Hall, 2002.

[17] R. Duda and P. Hart, “Use of the hough transformation
to detect lines and curves in pictures,” ACM Communi-
cations, 1972.

[18] G. Louloudis, B. Gatos, I. Pratikakis, and C. Halatsis,
“Text line and word segmentation of handwritten docu-
ments,” Pattern Recognition, 2009.

[19] V. Papavassiliou, T. Stafylakis, V. Katsouros, and
G. Carayannis, “Handwritten document image segmen-
tation into text lines and words,” Pattern Recognition,
2010.


