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ABSTRACT   

We have investigated the computational scalability of image pyramid building needed for dissemination of very large 
image data. The sources of large images include high resolution microscopes and telescopes, remote sensing and 
airborne imaging, and high resolution scanners. The term ‘large’ is understood from a user perspective which means 
either larger than a display size or larger than a memory/disk to hold the image data. The application drivers for our 
work are digitization projects such as the Lincoln Papers project (each image scan is about 100-150MB or about 
5000x8000 pixels with the total number to be around 200,000) and the UIUC library scanning project for historical maps 
from 17th and 18th century (smaller number but larger images). The goal of our work is understand computational 
scalability of the web-based dissemination using image pyramids for these large image scans, as well as the preservation 
aspects of the data. We report our computational benchmarks for (a) building image pyramids to be disseminated using 
the Microsoft Seadragon library, (b) a computation execution approach using hyper-threading to generate image 
pyramids and to utilize the underlying hardware, and (c) an image pyramid preservation approach using various hard 
drive configurations of Redundant Array of Independent Disks (RAID) drives for input/output operations. The 
benchmarks are obtained with a map (334.61 MB, JPEG format, 17591x15014 pixels). The discussion combines the 
speed and preservation objectives. 
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1. INTRODUCTION  
There have been several efforts underway to digitize many old manuscripts since they are too fragile to be accessed by 
everyone. Many libraries are scanning historical manuscripts and maps using high resolution scanners that generate very 
large images. These digital scans serve the purpose of preserving the information as well the purpose of making the 
manuscripts available to a large research community. As the historical materials are digitized, problems arise related to 
access and on-demand updates of the repository of digital scans.  

We have been involved in two projects that deal with large size and large volume of digital image scans. The first project 
involves image scans of Lincoln’s papers and legal documents (~5000x8000 pixels/each, ~150MB/each, ~25,000 
images, TIFF file format). The second project focuses on the digitization of historical maps from the 17th and 18th 
century at the University of Illinois library (~20000x15000 pixels/each, ~350MB/each, compressed jpeg file format). 
The challenge is to automatically update the repositories of image scans and make them easily accessible for scholars 
and general public. 

While these two scanning efforts were the main drivers of our computational scalability study, there are many other 
applications where image pyramids have to be built and computational scalability has to be understood. Applications 
processing airborne and satellite imagery or sky survey imagery would typically lead to Giga and Tera pixel images (see 
Costa Rica imagery in [1] and Large Synoptic Survey Telescope (LSST) generating  15 terabytes of daily raw data and 
approximately 150 petabytes of raw data by program end [2]). These very large size images have to be disseminated in a 
form of an image pyramid similar to Google Map. With the increasing resolution of commercial off-the-shelf cameras 
and their decreasing cost per pixel (e.g., Kodak EasyShare C195 14.0-Megapixel Digital Camera costs $100 as 
10/10/2010), panoramic images or images of cylindrical 3D objects imaged on a turn table generate very large images 
using these regular cameras and have to be converted into an image pyramid in order to view them efficiently. Example 
of images generated on a turn table can be found in imaging historical artifacts such as cylinder seals from Mesopotamia 
[3]. 

Our work is motivated by the lack of understanding about computational scalability of building image pyramids needed 
for dissemination of very large image data and the tradeoffs between preservation driven replication of data and an 



 

 

overhead incurred due to input/output operations of image pyramids to disks. Pyramid representation allows delivering 
image tiles to a client at the requested spatial resolutions and image location instead of sending the entire image.  

We address the problem by collecting and interpreting computational benchmarks for (a) building image pyramids to be 
disseminated using the Microsoft Seadragon library, (b) a computation execution approach using hyper-threading to 
generate image pyramids and to utilize the underlying hardware, and (c) an image pyramid backup approach using 
various hard drive configurations of Redundant Array of Independent Disks (RAID) drives for input/output operations. 

Image pyramids are built by cutting the original image into 256x256 tiles, saving the tiles to a disk, sub-sampling the 
original image and repeating the ‘cut’ and ‘save’ steps till 1x1 pixel tile is formed. The process of building an image 
pyramid is highly parallelizable since each tile at one level is independent of any of the other tiles at the same level. We 
take an advantage of this when spawning threads on multi-core machines. The data transfers to and from disk can be 
optimized with respect to speed and storage reliability for low-cost disk drive components such as the RAID. We 
experimented with RAID 0 (improved performance and additional storage but no redundancy or fault tolerance) and 
RAID 1 (provided fault tolerance from disk errors and failure of all but decreased performance and storage to one of the 
drives). 

2. BACKGROUND ON IMAGE PYRAMIDS, HYPER-THREADING AND DISK ARRAY 
CONFIGURATIONS   

2.1 Background on building Image Preview and Image Pyramid  

The concept of image pyramids has been introduced in 1983 by Burt and Adelson [6], and later patented as a pyramid 
processor method [7]. The initial Laplacian pyramid has been advanced by the introduction of Gaussian pyramid [8], 
Wavelets and quadrature mirror filters (QMFs) [10], and steerable pyramids [9]. There are clear advantages in building 
image pyramids of very large images allowing a user to download only a view of his interest but not the entire image. 

We have been working with the Seadragon library created by Microsoft [4] to allow users to smoothly and interactively 
view high resolution images using image pyramids. A user can zoom in and out of the image without having to pay the 
overhead of downloading the full image first.  The following illustration shows how an image pyramid works. The 
image itself is available in full resolution at the bottom of the pyramid, and lower resolution versions down to 1x1 pixels 
are stored alongside the full resolution image. The images at each level of the pyramid are stored in NxN pixel tiles, 
indicated by the white lines in Figure 1 (where N is often 256). 

 
Figure 1: Illustration of an image pyramid and its tiles. 
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reduction when writing. Array continues to operate so long as at least one drive is functioning. Using RAID 1 with a 
separate controller for each disk is sometimes called duplexing. 

Finally, the non-raid setup is exactly like the RAID 1 setup but we have no overhead of making sure the data is copied 
correctly to the second drive. We have created a setup like the RAID 0 with no redundancy of the data which in the case 
of a failure could result in total data loss. 

3. EXPERIMENTAL RESULTS 
3.1 Experimental Setup  

We have used as test system a standard desktop PC equipped with an I7 processor running at 2.8 Ghz, 8 cores when 
using hyper threading, 16 GB of memory and two 1TB drives. We tested a non-raid setup where we only used a single 
drive, a raid 1 configuration with both drives used resulting in 1TB drive space, and a raid 0 configuration with both 
drives resulting in 2TB of drive space.  

We installed Ubuntu 9.10 64-bit server on the system. The application that creates the image pyramid is written in java 
and was given 10GB of memory to work. We used the openJDK version 1.6 to run the application. When switching the 
drive configuration the system was completely wiped and reinstalled using the same process and same software. 

3.2 Test Data 

We have performed benchmarking of computational scalability with the map of North America created by Arrowsmith 
in 1814 (see Figure 3). The image that was given to us is a 334.61 MB JPEG. The image measures 17591x15014 pixels 
(WxH). 

 
Figure 3: The image scan of 1814 map of North America by Arrowsmith is a 334.61 MB JPEG; 17,591 x 15,014 pixels. 

3.3 Experimental Results 

For the test file (Arrowsmith 1814 map), we had to create a pyramid with 15 levels, 4071 tiles at the highest resolution 
and a total of about 5500 tiles total. Each tile was created on a separate thread. We used the java ExecutorService to limit 
the number of parallel threads. We had a minimum of one thread (in which case we did not use the ExecutorService) and 
a maximum of 20 threads. 

The figures that show the results of the experiment have on the vertical axis the time it took to finish that particular task 
in hours : minutes : seconds and on the horizontal axis the number of threads that are used in parallel. The markers 
indicate the number of threads used (1, 2, 4, 5, 7, 10, 15, 20). 



 

 

Figure 4  shows the results for creating the two thumbnails. Based on the number of threads allocated to the system the 
two thumbnails are either created in parallel (number of threads > 1) or sequential (number of threads = 1). We can see 
in Figure 4 that no matter what drive configuration is used it is more optimal to use more than one thread to create the 
thumbnails.  For example, when using two threads to create the thumbnails, there is a 30% decrease in computation time. 

 

 
Figure 4. Processing time needed for preview (thumbnail) creation for three different drive configurations and eight 
different numbers of values of threads. The input image is in JPEG file format (334.61 MB) and of image size 17591x15014 
pixels (WxH). 

Figure 5 shows the results for creating the pyramid. Each level of the pyramid is created sequentially and not until all 
tiles in a level have been created will the software continue to the next level of the pyramid. In the case of a single 
thread, all tiles will be created sequentially and the ExecutorService is not used. If more than one thread is used the 
system will create all the threads first and then execute them using the ExecutorService. 
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Figure 5. Processing time needed for pyramid creation for three different drive configurations and eight different numbers of 
values of threads. The input image is in JPEG file format (334.61 MB) and of image size 17591x15014 pixels (WxH). 

 
Figure 5 illustrates that the processing time does not differ too much when using NO RAID or RAID 1 configuration. 
The penalty paid in this particular experiment for using the RAID 1 configuration is only 8% when compared to a NO 
RAID configuration. However, we gain the redundancy of the data, i.e., if one of the drives fails we do not lose any data. 
When we compare the RAID 0 configuration to either the RAID 1 or NO RAID configuration we can see a dramatic 
improvement (about 4.5 times faster). This clearly indicates that the system is Input/Output limited. 

4. CONCLUSIONS AND FUTURE WORK 
We explored the computational benchmarks for building image pyramids using hyper-threading with the number of 
threads used (1, 2, 4, 5, 7, 10, 15, 20) and three hard drive configurations of Redundant Array of Independent Disks 
(RAID) drives for input/output operations (no RAID, RAID 0, and RAID 1). By analyzing all results, RAID 0 is clearly 
superior in terms of execution time compared to the other configurations. In all cases we could observe the I/O transfer 
becoming a bottleneck of the pyramid processing at a certain number of threads (4 threads in a case of RAID 0 and 8 
threads in a case of RAID 1 and no RAID setups). From the preservation perspective, there are many applications 
requiring not only fast execution of the computation but also high confidence in preserving the data in the event of 
hardware failure. When considering both objectives (execution time and data preservation), a failure in a RAID 0 
configuration will result in complete data loss. A RAID 1 configuration can withstand the failure of one drive without 
losing the data. The NO RAID configuration is not significantly faster when compared to RAID 1. If data preservation is 
critical then a RAID 1 configuration is definitely a feasible solution while taking into account the difference in costs. 

Future analyses of this topic would include (a) the difference between software and hardware RAID configurations,  (b) 
the difference between write and read execution time, and (c) how many Input/Output connections can each RAID disk 
configuration handle. These considerations are critical to understand when priorities on execution time shift from the 
pyramid creation (focus on writing) to pyramid viewing (focus on reading) or require to accommodate both (upload 
images for pyramid creation while viewing other existing image pyramids). 
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