
 

 

Computational Scalability of Large Size Image Dissemination 
 

Rob Kooper*a, Peter Bajcsya 

aNational Center for Super Computing Applications 
University of Illinois, 1205 W. Clark St., Urbana, IL 61801 

ABSTRACT   

We have investigated the computational scalability of image pyramid building needed for dissemination of very large 
image data. The sources of large images include high resolution microscopes and telescopes, remote sensing and 
airborne imaging, and high resolution scanners. The term ‘large’ is understood from a user perspective which means 
either larger than a display size or larger than a memory/disk to hold the image data. The application drivers for our 
work are digitization projects such as the Lincoln Papers project (each image scan is about 100-150MB or about 
5000x8000 pixels with the total number to be around 200,000) and the UIUC library scanning project for historical maps 
from 17th and 18th century (smaller number but larger images). The goal of our work is understand computational 
scalability of the web-based dissemination using image pyramids for these large image scans, as well as the preservation 
aspects of the data. We report our computational benchmarks for (a) building image pyramids to be disseminated using 
the Microsoft Seadragon library, (b) a computation execution approach using hyper-threading to generate image 
pyramids and to utilize the underlying hardware, and (c) an image pyramid preservation approach using various hard 
drive configurations of Redundant Array of Independent Disks (RAID) drives for input/output operations. The 
benchmarks are obtained with a map (334.61 MB, JPEG format, 17591x15014 pixels). The discussion combines the 
speed and preservation objectives. 

Keywords: gigapixel images, image pyramids 

1. INTRODUCTION  
There have been several efforts underway to digitize many old manuscripts since they are too fragile to be accessed by 
everyone. Many libraries are scanning historical manuscripts and maps using high resolution scanners that generate very 
large images. These digital scans serve the purpose of preserving the information as well the purpose of making the 
manuscripts available to a large research community. As the historical materials are digitized, problems arise related to 
access and on-demand updates of the repository of digital scans.  

We have been involved in two projects that deal with large size and large volume of digital image scans. The first project 
involves image scans of Lincoln’s papers and legal documents (~5000x8000 pixels/each, ~150MB/each, ~25,000 
images, TIFF file format). The second project focuses on the digitization of historical maps from the 17th and 18th 
century at the University of Illinois library (~20000x15000 pixels/each, ~350MB/each, compressed jpeg file format). 
The challenge is to automatically update the repositories of image scans and make them easily accessible for scholars 
and general public. 

While these two scanning efforts were the main drivers of our computational scalability study, there are many other 
applications where image pyramids have to be built and computational scalability has to be understood. Applications 
processing airborne and satellite imagery or sky survey imagery would typically lead to Giga and Tera pixel images (see 
Costa Rica imagery in [1] and Large Synoptic Survey Telescope (LSST) generating  15 terabytes of daily raw data and 
approximately 150 petabytes of raw data by program end [2]). These very large size images have to be disseminated in a 
form of an image pyramid similar to Google Map. With the increasing resolution of commercial off-the-shelf cameras 
and their decreasing cost per pixel (e.g., Kodak EasyShare C195 14.0-Megapixel Digital Camera costs $100 as 
10/10/2010), panoramic images or images of cylindrical 3D objects imaged on a turn table generate very large images 
using these regular cameras and have to be converted into an image pyramid in order to view them efficiently. Example 
of images generated on a turn table can be found in imaging historical artifacts such as cylinder seals from Mesopotamia 
[3]. 

Our work is motivated by the lack of understanding about computational scalability of building image pyramids needed 
for dissemination of very large image data and the tradeoffs between preservation driven replication of data and an 



 

 

overhead incurred due to input/output operations of image pyramids to disks. Pyramid representation allows delivering 
image tiles to a client at the requested spatial resolutions and image location instead of sending the entire image.  

We address the problem by collecting and interpreting computational benchmarks for (a) building image pyramids to be 
disseminated using the Microsoft Seadragon library, (b) a computation execution approach using hyper-threading to 
generate image pyramids and to utilize the underlying hardware, and (c) an image pyramid backup approach using 
various hard drive configurations of Redundant Array of Independent Disks (RAID) drives for input/output operations. 

Image pyramids are built by cutting the original image into 256x256 tiles, saving the tiles to a disk, sub-sampling the 
original image and repeating the ‘cut’ and ‘save’ steps till 1x1 pixel tile is formed. The process of building an image 
pyramid is highly parallelizable since each tile at one level is independent of any of the other tiles at the same level. We 
take an advantage of this when spawning threads on multi-core machines. The data transfers to and from disk can be 
optimized with respect to speed and storage reliability for low-cost disk drive components such as the RAID. We 
experimented with RAID 0 (improved performance and additional storage but no redundancy or fault tolerance) and 
RAID 1 (provided fault tolerance from disk errors and failure of all but decreased performance and storage to one of the 
drives). 

2. BACKGROUND ON IMAGE PYRAMIDS, HYPER-THREADING AND DISK ARRAY 
CONFIGURATIONS   

2.1 Background on building Image Preview and Image Pyramid  

The concept of image pyramids has been introduced in 1983 by Burt and Adelson [6], and later patented as a pyramid 
processor method [7]. The initial Laplacian pyramid has been advanced by the introduction of Gaussian pyramid [8], 
Wavelets and quadrature mirror filters (QMFs) [10], and steerable pyramids [9]. There are clear advantages in building 
image pyramids of very large images allowing a user to download only a view of his interest but not the entire image. 

We have been working with the Seadragon library created by Microsoft [4] to allow users to smoothly and interactively 
view high resolution images using image pyramids. A user can zoom in and out of the image without having to pay the 
overhead of downloading the full image first.  The following illustration shows how an image pyramid works. The 
image itself is available in full resolution at the bottom of the pyramid, and lower resolution versions down to 1x1 pixels 
are stored alongside the full resolution image. The images at each level of the pyramid are stored in NxN pixel tiles, 
indicated by the white lines in Figure 1 (where N is often 256). 

 
Figure 1: Illustration of an image pyramid and its tiles. 



 

 

We have int
uploaded the
pixels) and th
a user desire
server.  

Creating the 
memory, eac
are created w
Our approac
computation 
Disks) for inp

2.2 Backgro

Hyper-thread
duplicating th
to the host op
execution res
the processor
data depende
processor can

2.3 Backgro

RAID (Redu
using low-co
but no redun
Independent 
to distribute 
the array, wh
severe comp
written to a R
in the array. 
sections of t
implement er
the greater ri

Figure 2. 

RAID 1, pro
occurs when

ternally created
eir image. The
hen the image 

es to view the l

tiles of each l
ch tile can be cu
we are intereste
h to computat
execution and

put/output ope

ound on Hype

ding works by 
he main execu
perating system
sources would 
r is stalled (the
ency or anythin
n use those exe

ound on hard 

undant Array o
ost disk drive c
ndancy or fault
Disks, i.e. not 
data across mu

hich has greate
ared to single 

RAID 0 drive, 
The fragments
the entire chu
rror checking s
sk of data loss

Illustration of R

ovides fault tol
n using a multi

d the software
e system will 
pyramid. The 
large images u

level of the py
ut out and stor

ed in how fast w
tional scalabili
d various hard
erations in orde

er-threading 

duplicating ce
ution resources
m, allowing th
not be used b

e processor ha
ng that prevent
ecution resourc

drive configu

f Independent 
components (s
t tolerance. Be
true RAID. Ho

ultiple disks), s
er consequence

drives withou
the data is brok
s are written to

unk of data to
so any error is u
.  

RAID 0 (left) and

lerance from d
i-threaded oper

e as part of a 
take the uploa
speed of the p

using the Seadr

yramid lends it
re to disk by se
we can write th
ity of image py
d drive configu
er to achieve th

ertain sections o
. This allows a
e operating sy

by the current t
s to wait idle f
ts the processo
ces to execute a

urations  

Disks) [5] is a
see Figure 2). 
ecause there is
owever, becau
simple stripe s
es with more di
ut RAID). A si
ken into fragm
o their respecti

o be read off 
unrecoverable

         
d RAID 1 (right)

disk errors and
rating system 

larger system
aded image an

preview and im
ragon technolo

tself for simpl
eparate threads
he tiles to disk
yramid buildin

urations such a
he fastest execu

of the processo
a hyper-threadi
stem to schedu
task in a proce
for example du
r from executin
another schedu

a technology to
RAID 0, prov

s no redundanc
se of the simila
ets are normall
isks in the arra
ingle disk failu

ments. The num
ive disks simu
the drive in p
. The more dis

                       
) from [5]. 

d failure of all 
that supports 

m to create the
nd create two 

mage pyramid c
ogy immediate

le parallelism. 
. Because of th

k since that is w
ng is to invest
as RAID drive
ution of the com

or—those that 
ing processor t
ule two threads
essor without h
ue to a cache m
ng the next com

uled task. 

o create high l
ides improved
cy, this level i
arities to RAID
ly referred to a
ay (at a minimu
ure destroys th

mber of fragmen
ultaneously on 
parallel, increa
ks in the RAID

  

but one of the
split seeks, as

se image pyra
thumbnails (1

computations a
ely after the up

One the large
he potential lar
where the bottle
tigate the use 
es (Redundant 
mputation of in

store the archi
to appear as tw
s or processes 

hyper-threading
miss, branch in
mmand), a hyp

evels of storag
d performance 
s not actually 

D (especially th
as RAID 0. An
um, catastroph
he entire array
nts is dictated b
the same secto
asing bandwid
D array, the hig

e drives. Increa
s well as a ve

amids once a u
100x100 and 8
are of our inter
pload of the da

er image is loa
rge number of t
eneck of our sy
of hyper-threa
Array of Inde

nterest. 

itectural state—
wo "logical" pr

simultaneously
g, and especial
naccurate pred
per-threading e

ge reliability an
and additional
a Redundant A

he need for a co
ny disk failure 
hic data loss is 
y because when
by the number
or. This allows
dth. RAID 0 d
gher the bandw

 

ased read perfo
ery small perfo

user has 
800x600 
est since 

ata to the 

aded into 
tiles that 
ystem is. 
ading for 
ependent 

—but not 
rocessors 
y. When 
lly when 
iction or 
equipped 

nd space 
l storage 
Array of 
ontroller 
destroys 
twice as 

n data is 
r of disks 
s smaller 
does not 

width and 

formance 
formance 



 

 

reduction when writing. Array continues to operate so long as at least one drive is functioning. Using RAID 1 with a 
separate controller for each disk is sometimes called duplexing. 

Finally, the non-raid setup is exactly like the RAID 1 setup but we have no overhead of making sure the data is copied 
correctly to the second drive. We have created a setup like the RAID 0 with no redundancy of the data which in the case 
of a failure could result in total data loss. 

3. EXPERIMENTAL RESULTS 
3.1 Experimental Setup  

We have used as test system a standard desktop PC equipped with an I7 processor running at 2.8 Ghz, 8 cores when 
using hyper threading, 16 GB of memory and two 1TB drives. We tested a non-raid setup where we only used a single 
drive, a raid 1 configuration with both drives used resulting in 1TB drive space, and a raid 0 configuration with both 
drives resulting in 2TB of drive space.  

We installed Ubuntu 9.10 64-bit server on the system. The application that creates the image pyramid is written in java 
and was given 10GB of memory to work. We used the openJDK version 1.6 to run the application. When switching the 
drive configuration the system was completely wiped and reinstalled using the same process and same software. 

3.2 Test Data 

We have performed benchmarking of computational scalability with the map of North America created by Arrowsmith 
in 1814 (see Figure 3). The image that was given to us is a 334.61 MB JPEG. The image measures 17591x15014 pixels 
(WxH). 

 
Figure 3: The image scan of 1814 map of North America by Arrowsmith is a 334.61 MB JPEG; 17,591 x 15,014 pixels. 

3.3 Experimental Results 

For the test file (Arrowsmith 1814 map), we had to create a pyramid with 15 levels, 4071 tiles at the highest resolution 
and a total of about 5500 tiles total. Each tile was created on a separate thread. We used the java ExecutorService to limit 
the number of parallel threads. We had a minimum of one thread (in which case we did not use the ExecutorService) and 
a maximum of 20 threads. 

The figures that show the results of the experiment have on the vertical axis the time it took to finish that particular task 
in hours : minutes : seconds and on the horizontal axis the number of threads that are used in parallel. The markers 
indicate the number of threads used (1, 2, 4, 5, 7, 10, 15, 20). 



 

 

Figure 4  shows the results for creating the two thumbnails. Based on the number of threads allocated to the system the 
two thumbnails are either created in parallel (number of threads > 1) or sequential (number of threads = 1). We can see 
in Figure 4 that no matter what drive configuration is used it is more optimal to use more than one thread to create the 
thumbnails.  For example, when using two threads to create the thumbnails, there is a 30% decrease in computation time. 

 

 
Figure 4. Processing time needed for preview (thumbnail) creation for three different drive configurations and eight 
different numbers of values of threads. The input image is in JPEG file format (334.61 MB) and of image size 17591x15014 
pixels (WxH). 

Figure 5 shows the results for creating the pyramid. Each level of the pyramid is created sequentially and not until all 
tiles in a level have been created will the software continue to the next level of the pyramid. In the case of a single 
thread, all tiles will be created sequentially and the ExecutorService is not used. If more than one thread is used the 
system will create all the threads first and then execute them using the ExecutorService. 

0:00:000:00:090:00:170:00:260:00:350:00:430:00:520:01:000:01:090:01:18

0 5 10 15 20

P
ro

ce
ss

in
g 

T
im

e 
(H

H
:M

M
:S

S)

Number of Threads

Thumbnail Creation

raid 0raid 1no raid



 

 

 
Figure 5. Processing time needed for pyramid creation for three different drive configurations and eight different numbers of 
values of threads. The input image is in JPEG file format (334.61 MB) and of image size 17591x15014 pixels (WxH). 

 
Figure 5 illustrates that the processing time does not differ too much when using NO RAID or RAID 1 configuration. 
The penalty paid in this particular experiment for using the RAID 1 configuration is only 8% when compared to a NO 
RAID configuration. However, we gain the redundancy of the data, i.e., if one of the drives fails we do not lose any data. 
When we compare the RAID 0 configuration to either the RAID 1 or NO RAID configuration we can see a dramatic 
improvement (about 4.5 times faster). This clearly indicates that the system is Input/Output limited. 

4. CONCLUSIONS AND FUTURE WORK 
We explored the computational benchmarks for building image pyramids using hyper-threading with the number of 
threads used (1, 2, 4, 5, 7, 10, 15, 20) and three hard drive configurations of Redundant Array of Independent Disks 
(RAID) drives for input/output operations (no RAID, RAID 0, and RAID 1). By analyzing all results, RAID 0 is clearly 
superior in terms of execution time compared to the other configurations. In all cases we could observe the I/O transfer 
becoming a bottleneck of the pyramid processing at a certain number of threads (4 threads in a case of RAID 0 and 8 
threads in a case of RAID 1 and no RAID setups). From the preservation perspective, there are many applications 
requiring not only fast execution of the computation but also high confidence in preserving the data in the event of 
hardware failure. When considering both objectives (execution time and data preservation), a failure in a RAID 0 
configuration will result in complete data loss. A RAID 1 configuration can withstand the failure of one drive without 
losing the data. The NO RAID configuration is not significantly faster when compared to RAID 1. If data preservation is 
critical then a RAID 1 configuration is definitely a feasible solution while taking into account the difference in costs. 

Future analyses of this topic would include (a) the difference between software and hardware RAID configurations,  (b) 
the difference between write and read execution time, and (c) how many Input/Output connections can each RAID disk 
configuration handle. These considerations are critical to understand when priorities on execution time shift from the 
pyramid creation (focus on writing) to pyramid viewing (focus on reading) or require to accommodate both (upload 
images for pyramid creation while viewing other existing image pyramids). 

0:00:00
0:07:12
0:14:24
0:21:36
0:28:48
0:36:00

0 5 10 15 20P
ro

ce
ss

in
g 

T
im

e 
(H

H
:M

M
:S

S)

Number of Threads

Pyramid Creation

raid 0raid 1no raid



 

 

ACKNOWLEDGEMENTS 

This research has been funded through the National Science Foundation Cooperative Agreement NSF OCI 05-25308 and 
Cooperative Support Agreement NSF OCI 05-04064 by the National Archives and Records Administration (NARA) 

REFERENCES 

[1] Kooper R. and Bajcsy P., “Parallel Image Stitching of Airborne Imagery,” IS&T/SPIE Electronic Imaging 2011, 
January 23-27 (proceedings are in press). 

[2] Jewett B. “NCSA: Sky Yields Big Data,” HPC Wire,  July 6, 2010; http://www.hpcwire.com/offthewire/NCSA-
Sky-Yields-Big-Data-97863504.html 

[3]  Lundberg M. J., “Cylinder Seals and the West Semitic Research Project,”, 
http://www.usc.edu/dept/LAS/wsrp/educational_site/ancient_texts/cylinder_seals.shtml 

[4] Microsoft Seadragon library for web-based delivery of image pyramids, http://seadragon.com 
[5] Standard RAID levels, Wikipedia; http://en.wikipedia.org/wiki/Standard_RAID_levels 
[6] BURT P. J, and ADELSON E. H. “The Laplacian Pyramid as a Compact Image Code,” IEEE TRANSACTIONS 

ON COMMUNICATIONS, VOL. COM-3l, NO. 4, APRIL 1983 
[7] Burt P.J. “Pyramid processor for building large are high resolution images by parts,”- US Patent 4,797,942, 1989 
[8] Adelson E. H. , Anderson |C. H., Bergen J. R. , Burt P. J., and Ogden J. M., “Pyramid methods in image 

processing,” RCA Engineer • 29-6 • Nov/Dec 1984 
[9] E. P. Simoncelli and W. T. Freeman, The steerable pyramid: a flexible architecture for multi-scale derivative 

computation, 2nd Annual IEEE International Conference on Image Processing, Washington, DC. October, 1995. 
[10] Akansu A.N, Haddad R. A., and Caglar H., “The Binomial QMF-Wavelet Transform for Multiresolution Signal 

Decomposition, “ IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41. NO. I . JANUARY 1993 
 


