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ABSTRACT   

This paper addresses the problem of stitching Giga Pixel images from airborne images acquired over multiple flight 
paths of Costa Rica in 2005. The set of input images contains about 10,158 images, each of size around 4072x4072 
pixels, with very coarse georeferencing information (latitude and longitude of each image). Given the spatial coverage 
and resolution of the input images, the final stitched color image is 294,847 by 269,195 pixels (79.3 Giga Pixels) and 
corresponds to 238.2 GigaBytes. An assembly of such large images requires either hardware with large shared memory 
or algorithms using disk access in tandem with available RAM providing data for local image operation. In addition to 
I/O operations, the computations needed to stitch together image tiles involve at least one image transformation and 
multiple comparisons to place the pixels into a pyramid representation for fast dissemination. The motivation of our 
work is to explore the utilization of multiple hardware architectures (e.g., multicore servers, computer clusters) and 
parallel computing to minimize the time needed to stitch Giga pixel images. 

Our approach is to utilize the coarse georeferencing information for initial image grouping followed by an intensity-
based stitching of groups of images. This group-based stitching is highly parallelizable. The stitching process results in 
image patches that can be cropped to fit a tile of an image pyramid frequently used as a data structure for fast image 
access and retrieval.  We report our experimental results obtained when stitching a four Giga Pixel image from the input 
images at one fourth of their original spatial resolution using a single core on our eight core server and our preliminary 
results for the entire 79.3 Gigapixel image obtained using a 120 core computer cluster.  
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1. INTRODUCTION 
There have been significant advancements in imaging instruments, and their dissemination and adoption in many 
scientific areas. The increase in pixel counts generating by various imaging instruments pose challenges for storage, 
integration, search, and image understanding. In addition, the cost per pixel has been steadily decreasing which makes 
the challenges widely spread across many consumers of images. For example, as of October 2010, the following cost per 
pixel can be derived from the commonly accessible imaging devices: (a) Scanners (~$165) such as Canon’s CanoScan 
8800F Flatbed Scanner, generate 4800 x 9600 dpi Resolution (46.1 Megapixel) for a letter size scan area; (b) Cameras 
(~$100) such as Kodak’s EasyShare C195 generate 14 Megapixel or Samsung’s camera 12.2 Megapixel; (c) 
Microscopes (~$100) such as Avangard’s Optics AN-E500 eScope generates 2.0 Mega Pixel; (d) Telescopes (~$170) 
such as COSTAR’s 8x32 Digital Binoculars Telescope generates 2 M Pixel Pixel. The availability of advanced imaging 
instruments and the low cost per pixel leads to questions about efficient storage, processing and dissemination of Giga 
and Tera pixel images. Our investigation aims at understanding of computational requirements and algorithmic 
approaches for multi-core and computer cluster hardware architectures.The focus of our work is on the problem of 
stitching thousands of 16Mega pixel image tiles to a 79.3 Giga pixel image and forming a pyramid representation for fast 
access and retrieval. Image pyramid is a standard representation of very large size images that allows fetching only 
image sub-areas of interest to an end user at the requested resolution [1]. The pyramid representation avoids 
downloading the entire image as it might not be necessary to transfer all data and/or the end user might not have enough 
memory and bandwidth to receive the data. The pyramid is created by cropping tiles out of the highest resolution image, 
down-sapling the original image and cropping tiles out of the down-sampled image. The down-sampling continues until 
the tip of the pyramid is reached of pixel size. 



 
 

 
 

 

Imaging using digital cameras or scanners can be performed over spatial segments of a single object whose entire digital 
image at the high spatial resolution has to be eventually stitched together.  The motivation of our work is to understand 
the challenges of stitching Giga and Tera Pixel images using parallel computing resources. The applications of this 
stitching problem can be found, for example, in microscopy imaging with motorized stages, airborne imaging in multiple 
flight paths, or scanning of large size historical maps presented in pieces or rolls of film negatives.  

Our work is related to past efforts that process many snapshot images to a large size single image such Google Map,  
various Giga Pixel images generated by photographers and representations to provide fast access to Giga pixel images 
(see [1]). Our work is different from the past efforts by working with airborne imagery (10,158 images acquired over 
multiple flight paths of Costa Rica in 2005), by dealing with a film-based rather than direct digital image acquisition, and 
by having a highly uncertain georeferencing information available for stitching. The georeferencing information was 
obtained during film scanning by manually creating an entry into an excel spread sheet.  Our approach is to utilize the 
coarse georeferencing information for initial image grouping followed by an intensity-based stitching of groups of 
images.  

Given the spatial coverage and resolution of the input images, the final stitched image is 294,847 by 269,195 pixels (79.3 
Giga Pixels). We opted to create an image pyramid directly as we are stitching the input images together to overcome 
size limitations. The resulting image pyramid consists of 19 levels (logଶሺmaxሺ݄ݐ݀݅ݓ, ሻሻݐ݄݄݃݅݁ ൌ 18.17ሻ with the 
bottom level being formed from 1,211,904 tiles out of the total 1,616,015 tiles of the full pyramid corresponding to 
317.6 GB of total size. Every level of the pyramid above the bottom level is created by sub-sampling multiple tiles to a 
form new tile. Thus, we just have to build the bottom level tiles from a set of input images.  

An image group is formed from all images by finding those images that overlap with a chosen pyramid tile based on the 
course georeferencing information. First, images in each image group are stitched together (referred to as intra-group 
stitching).  Next, the stitched image is cropped to fit a pyramid tile with a small extending overlap.  Last, the tiles are 
adjusted for tile-to-tile misalignments (referred to as inter-tile stitching) using an image matching method, and the final 
tiles are cropped out.  

We benchmarked a preliminary result of a quarter size image, resulting in a 4 Giga Pixel image (73,712 x 67,298 pixels). 
This process took 63 hours on a single processor. A full resolution image would take an estimated time of 42 days on the 
same hardware. If we want to move to larger countries or larger states (Texas for example will result in a Tera Pixel 
image), we have to use parallelization. Fortunately, the methodology described is trivial to parallelize since the 
computation for each tile is independent of all the other tiles. We have explored creation of the full size Costa Rica 
image using a 120 core computer cluster and report our preliminary results. 

2. INPUT DATA 
In 2005 the Costa Rica government hired NASA to capture aerial data of Costa Rica. The data was collected between 
March 2005 and May 2005. Figure 1 shows all the flight paths taken during the acquisition. The plane was equipped 
with a hyperspectral camera as well as an infrared camera. The images we used for the stitching of the final image are 
from the infrared camera. The camera inside the airplane recorded the images to a filmstrip, at the same time the airplane 
recorded the heading of the aircraft as well as altitude. The filmstrips where then developed and scanned in Costa Rica. 
For each image the operator manually entered, a sequence number, filename, central latitude and longitude, latitude and 
longitude for each of the four corners as well as the date of the image was recorded in an excel spreadsheet as each of the 
images was scanned. We received this excel spreadsheet together with 10,158 images as our input data. We downloaded 
the flight plans from the NASA aircraft as an additional input for our algorithm. 



 
 

 
 

 

Figure 1 a
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3. STITCHING FINAL IMAGE 
To obtain a better understanding of the scale of the image stitching problem we worked with a subset of the input 
images. We selected 23 tiles from the complete dataset. The image content is a river and will help us with determining 
the accuracy of stitching. Using the georeferencing information provided to us we stitched all 23 tiles together and 
created the image in Figure 3. The image is 21,466 x 12,585 pixels and covers the area (in degrees, lat/lon) from 
(10.7149, -84.2812) to (10.8726, -84.0200). The image pyramid that was created is 15 levels deep and contains a total of 
5641 tiles. In this image we can see the inaccuracy of the georeferencing information, as well as the potential pincushion 
effect from the camera as well as the scanner. Before stitching the final image we looked at improving the accuracy of 
the georeferencing information by applying a feature matching algorithm to the images. 

 

 
Figure 3 Initial stitching of subset of images. 

The problem of alignment and stitching of images is a problem for which a lot of literature has been written. The 
algorithms for this task are among the oldest and more widely used in computer vision. These algorithms fall inside the 
image registration problems, which try to align some images by overlaying them, in the way that the pixels that represent 
the same parts of the scene are in the same position. In the case of remotely sensed images, there a lot of implemented 
and tested techniques, as documented in [2]. All of them can be used although the results would depend on the quality of 
input images (warping, accuracy of georeferencing information, presence of reliable features, intensity variation over the 
same area acquired at different times, etc.). As noted in [3], there is not a method that will work for absolutely all the 
images. There are four steps in the process of registration: feature detection, feature matching, transform model 
estimation and image resampling and transformation [4]. 

First, contrast salient and temporally invariant features are extracted from all images as the reference points. These 
features should be invariant across all images as they will be matched in later steps and used to calculate a spatial 
transformation. Good salient features can be regions, edges or points. In general, all types of features and all methods 
found in the literature are good candidates for stitching remotely sensed imagery. In our initial analysis, we selected 
regions as features and extracted them using the SURF feature detector [5].  

Second, to match region features, we used the Euclidean distance metric applied to the descriptor vectors of each pair of 
SURF features. As in the matching method presented in the work reported by Herbert Bay et al.[5], a match is found if 
its distance is closer than 0.5 times the distance of the second nearest neighbor [6] [7] [8] (experimentally it gave better 



 
 

 
 

 

results than the 0.7 value in the original implementation). Additional geometric restrictions reduce the possibility of a 
bad match, although bad matches cannot be completely avoided due to temporally dynamic objects, such as clouds or 
ocean waves along the coast. To minimize bad matches, a double relaxation process is implemented. The first step of the 
relaxation process is based on the Delaunay triangulation algorithm [9]. It is based in the fact that most points are well 
matched and hence the triangulation in both images should be very similar. The second step of the relaxation process is 
based on the outlier detection, assuming that the approximate geographical distance is the same between points in both 
images. Thus, corresponding pairs of points with a different geographical distance could be detected by comparing the 
distance to the mean distance and then declaring them as fake matches. 

Third,  transformation model parameters are estimated to align one image with another. In our implementation, we have 
approximated parameters of an affine transformation based on the control points determined in the previous step. The 
estimation is completed using a least-square fit method to find out the affine transformation model parameters. 

Finally, the image is transformed and resampled using the affine transform computed in the previous step and the actual 
intensity values at each pixel location are calculated using a bi-cubic interpolation. 

We have used the above method to warp 23 images from our subset and stitch them together. Figure 4 shows the 
resulting image after warping the tiles. This image uses the center image as the image to which all other images are 
warped (i.e. the center image is not warped but other images are). Figure 5 shows the advantage of warping the images 
in the resulting alignment quality. However, we can also see in Figure 4 that the images that are farthest away from the 
original image are extremely warped. The 23 tiles used are only a small subset of the final image. The larger the image 
we create and the farther away from the center image we go, the worse the warping and errors become. The best results 
would be obtained if the center image is also warped based on the surrounding image using a feedback loop. 
Nevertheless, we would still have to deal with the error propagation the farther away we go from the central image. 

Based on the aforementioned considerations about (a) additional computation time needed to perform the warping of the 
images, and (b) the error propagation for image tiles far from the center tile, we have decided to pursue the non-perfect 
stitching approach. 

 

 
Figure 4 Stitching of subset images after applying corrections. 

 



 
 

 
 

 

 

Figure 5 C

The final ima
be created in
client/server 
which pyram
be computed
inside the bo
path as well a
which point t
that we can r
crashed then 
issue all tiles
then it can b
with high fai

To test our h
image stitchi
this purpose,
configuration
created. Each
write the fina
computed (th
improvement
the graph to 
resources. 

On the same
images) but s
20 threads. D
believe that a

Close-up of war

age that we ne
ndependently 
model to comp

mid tile needs to
d. The client w
unding box of 
as the pyramid
the client will 
restart the syste
the server wou

s again and per
be retrieved an
lure mode ove

hypothesis abou
ing and pyrami
, we leveraged
n. Each of the t
h thread will th
al pyramid tile
his prevents tw
t of using man
have a dip ar

 dual quad cor
sub-sampled fi
During the ima
adding more C

rped image (left)

4
eed to create is
of any of the
pute each of th
o be computed

will then conve
f the pyramid ti
d tile and finally
notify the serv
em and continu
uld simply reis
rform a simple
nd does not hav
r a long period

ut computation
id creation from
d a dual quad 
threads would 

hen load all ori
e to disk. To op
wo threads from
ny threads to do
round 10 paral

re machine we
irst to one quar
age pyramid cre
PU resources w

  
) and non-warped

4. PARALL
 19 levels deep

e other tiles, r
he pyramid tile
d next. Each of
ert the image 
ile. All images 
y all tiles are p

ver of completi
ue computation
ssue the tile th
 check of a cli
ve to be re-co

d of time (i.e., a

nal speed up u
m the subset o
core machine
contact a cent
ginal images n
ptimize the sys
m trying to lo
o the actual co
llel computatio

e benchmarked
rter of the origi
eation, the sys
would not impr

  
d image (right).

LEL ALGO
p and will hav
resulting in a 
es. The server i
f the clients wil
location to a g
will be retriev

put together to 
ion and ask for
n in case the se
at was lost. In 
ient whether th
mputed. This 
almost every h

sing the above
f images using

e with 16GB o
tral server to fe
needed to comp
stem we first lo
oad the same im
omputations. W
ons since at th

 building an im
inal resolution.
tem was almos
rove the compu

ORITHM 
e 1,616,015 til
system that is

is responsible f
ll connect to th
geographical l

ved from disk, r
create the pyra
r the next tile.
erver crashes o
addition, if the

he tile already e
client/server d

hardware). 

e parallel comp
g a different nu
of memory and
etch informatio
pute the pyram
oad all 23 ima
mage at the sa

We are using an
hat point the d

mage pyramid 
. It took 13 hou
st always 100%
utational speed

les. Each of th
s easy to para
for handing ou
he server and a
ocation and fi
rotated and sca
amid tile. The t
One major adv

or any of the cl
e server crashe
exists or not. If

design is impor

putation design
umber of parall
d 8TB of disk
on about the ne

mid tile, stitch th
ges into memo
ame time). In 
n 8 core machi
different thread

of the full set 
urs to create th
% busy waiting
d in our I/O lim

ese tiles, howe
allelize. We c
ut to each of th
ask for pyramid
ind all images 
aled to match t
tile is written t
vantage of this
lient crashes. If
ed then it could
f the tile alread
rtant for any h

n, we benchma
lel worker thre

k storage in a 
ext tile that nee
he images toge
ory before any 
Figure 6 we s
ine and thus w
ds start to com

of image tiles
e image pyram
g for I/O, leadi

mited hardware

 

ever, can 
created a 
he clients 
d tiles to 
that are 

the flight 
to disk at 
s setup is 
f a client 
d start to 
dy exists 
hardware 

arked the 
eads. For 
RAID-5 

eds to be 
ether and 

tiles are 
show the 

we expect 
mpete for 

 (10,158 
mid using 
ing us to 
e. 



 
 

 
 

 

Figure 6: 

The final stit
is a subset of
nodes and a 
Server Mess
stitched imag
around 30 da
discovered th
loads the ima
This optimiz
(i.e., we cou
computing th

Screenshots 
the result of 
Costa Rica. 
individual im

Figure 7: 

Graph showing

tched image wa
f nodes of the A
single head no
age Block (SM
ge we were gi
ays and had co
he option of op
ages as RGB i

zation led to a 
uld start and st
he final 600,00

of the final sti
stitching all 1
As we zoom 

mages that are s

Left - the fully 

 time versus num

5
as created on o
ABE cluster ru
ode. Each of th
MB) file system
iven full acces
ompleted the c
ptimizing the c
images, which 
20 fold speed

top our compu
0 tiles in 3 day

itched image a
0,158 images 
in on the bay

stitched togethe

stitched image. R

mber of threads t

5. FINAL S
one of the NCS
unning Window
hese nodes has
m that is moun
ss to all 16 co
computation of
code by loading

resulted in a f
d-up in compu
utations withou
ys. 

and its pyramid
together and v

y of Costa Ric
er to make the 

Right -  a zoome

to create image p

STITCHED
SA high perfor
ws operating sy
s 8 cores and 1
nted on each o
ompute nodes.
f approximatel
g the images fr
faster combina

utation. Levera
ut losing any 

d representatio
viewing the im
ca coastline in
final image. 

  
ed viewed of the

pyramid. 

D IMAGE 
rmance clusters
ystem. The MS
16GB of memo
of the compute
 Our initial im

ly 1,000,000 o
from disk using
ation of image
aging the clien
previous resul

on are shown in
mage zoomed o
n Figure 7 (rig

e fully stitched im

s. The NCSA c
S ABE cluster c
ory. The file sy
e nodes. For th
mplementation 
f the pyramid 
g our own file 
s into each fin

nt/server design
lts), we used t

n Figure 7. Fig
out far enough 
ght), we can s

mage. 

 

cluster called M
consists of 16 c
ystem is provi

he creation of 
had been run
tiles. At this p
loader. Our fil

nal image pyra
n of parallel al
the improved c

gure 7 (left) il
to show the ou

start to disting

MS ABE 
compute 
ided as a 
the final 

nning for 
point we 
le loader 

amid tile. 
lgorithm 
code for 

llustrates 
utline of 

guish the 

 



 
 

 
 

 

6. CONCLUSIONS 
Using image pyramids we were capable of disseminating a 79 Giga Pixel image which would not be otherwise possible 
because the final image would be too large for any file format, or because the browsers or other applications cannot 
handle the large number of images or the full size of the stitched image. 

Stitching and creation of these image pyramids is trivial to parallelize since each of the pyramid tiles can be created 
independently of each other. Having the ability restart the process is important especially considering the fact that the 
system initially was running for 30 days and survived two reboots (scheduled every first Tuesday of the month). 

Leveraging of the massive parallelization we expect to be able to repeat this process to create the final stitched image in 
under a week of computation time.  
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