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1 INTRODUCTION 

 

Microarray data processing spans a large number of research themes starting from (1) 

microarray image analysis, (2) data cleaning and pre-processing, semantic integration of 

heterogeneous, distributed bio-medical databases, (3) exploration of existing data mining 

tools for bio-data analysis, and (4) development of advanced, effective, and scalable data 

mining methods in bio-data analysis [9].  The objective of any microarray data analysis is 

to draw biologically meaningful conclusions [12], [38]. In order to support this objective, 

we will focus on microarray image processing issues in this chapter. We provide an 

overview of microarray technologies, overall microarray data processing workflow and 

management, microarray layout and file format, image processing requirements and 

existing spot variations, and image processing steps. The image processing steps outlined 

in this chapter include grid alignment, foreground separation, spot quality assessment, 

data quantification and normalization.  

 

 

2 MICROARRAY TECHNOLOGIES 
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Understanding cellular processes and the relationships between cells of differing 

function and metabolic pathways is essential for the understanding of the life sciences. 

With the increased availability of genome sequence due to technological and computing 

advances, recent years have shown a radical change in the way biology is carried out, 

shifting towards a systems approach as opposed to a focus on individual genes [43]. The 

accumulation of sequence data for large compliments of genes has set the stage for high 

throughput technologies for gene expression, gene polymorphisms and DNA copy 

number variation. Until the end of the last century the ability to measure gene expression 

or DNA polymorphisms were restricted to individual genes through the traditional 

separation and hybridization methods of Southern or Northern blots or quantitative or 

semi-quantitative PCR using radioactive labeling or chemiluminescence [68]. New high 

throughput methods that have emerged include differential display [52], serial analysis of 

gene expression (SAGE) [74], massive parallel signature sequencing (MPSS) [18] and 

DNA microarrays [24]. Over the past 10 years microarray technologies have been 

integrated into research involving the relationship of genotype and gene expression to 

disease [38], development [5], environmental stress [49], behavior [76] and evolution 

[58]. The availability of commercially produced microarrays, production equipment and 

reagents, and the widespread introduction of academic and industry core facilities has 

resulted in an exponential increase in publications based on these technologies. For 

example, a keyword search for "microarray" on the NCBI Pubmed site for the years 

1995-2004 brings up only the seminal paper by Schena et al. in 1995 [64] with an 

increase to 21, 292, 1514 and 3082 for the years 1998, 2000, 2002 and 2004 respectively 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed). Typical applications of 
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microarrays are constantly evolving and today include gene expression, genotyping with 

single nucleotide polymorphism (SNP) detection [21], protein binding assays [35], 

chromatin immunoprecipitation (CHIP) [41], comparative genomic hybridization (CGH) 

[56], and microRNA detection [6]. 

DNA microarrays are typically composed of thousands of DNA sequences, called 

probes, fixed to a glass or silicon substrate. The DNA sequences can be long (500-

1500bp) cDNA sequences or shorter (25-70 mer) oligonucleotide sequences. 

Oligonucleotide sequences can be presynthesized and deposited with a pin or 

piezoelectric spray or synthesized in situ by photolithographic or ink-jet technologies. 

Relative quantitative detection of gene expression or gene copy number can be 

carried out between two samples on one array or by single samples comparing multiple 

arrays. In the first, samples from two sources are labeled with different fluorescent 

molecules (Cy3 and Cy5, or Alexa 555 and Alexa 647) and hybridized together on the 

same array. The labels Cy3 or Alexa 555 correspond to a green fluorescent wavelength, 

and Cy5 and Alexa 647 to red wavelength (Cy dyes are made by Amersham, now GE 

lifescience, the Alexa dyes are molecular probes made by now Invitrogen). The array is 

then scanned by activation with lasers at the appropriate wavelength to excite each dye. 

The relative fluorescence between each dye on each spot is then recorded and a 

composite image may be produced. The relative intensities of each channel represent the 

relative abundance of the RNA or DNA product in each of the two samples.  The 

alternative approach is to label each sample with the same dye and hybridize to separate 

arrays. The absolute fluorescent values of each spot may then be scaled and compared 

with the same spot between both arrays.  
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The discovery of novel technologies has led to an increase in the number commercial 

companies offering off the shelf or custom designed arrays. Almost all are based on in 

situ oligo synthesis or deposition. Examples of these technologies include chips produced 

by Affymetrix (http//:www.affymetrix.com) using fixed masks with photolithography, 

NimbleGen (http//:www.nimblegen.com) using photolithography with a digital 

micromirror device (DMD), Agilent (http://www.chem.agilent.com) using inkjet and 

phosphoramidite chemistry, and Combimatrix (http://www.combimatrix.com) using 

semiconductors for in situ synthesis. Although commercial arrays are in general more 

expensive on a per unit basis than those produced in core or individual labs they 

generally offer much more stringent quality control and uniformity. The choice of using a 

commercial source or producing ones own arrays lies in a number of factors including the 

number of arrays planned in an experiment, the organism chosen as a model and the 

amount of labor, and cost, that can be allocated to a project. 

The basic methods for extracting data from a microarray image involve identification 

and measurement of fluorescent intensity for each individual sequence element on the 

array. Depending on the particular platform, data acquisition software will need to 

identify the array format, including the array layout, spot size and shape, spot intensities, 

distances between spots, resolution, and background fluorescence. Many different factors 

can influence the quality of an image and the complexity of image analysis [81]. A few 

commercial applications such as the Affymetrix GeneChip adhere to strict protocols and 

conditions which have been standardized and optimized. However, many other 

technologies may utilize different components and protocols for array production, sample 

labeling, hybridization and image acquisition which introduce many sources of variation. 
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Printing parameters such as pin size and shape, printing speed, temperature and humidity, 

printing buffers and deposition surface will all affect the size and morphology of the 

individual spots. The type of glass and coating, blocking agents, hybridization and wash 

buffers will all affect background fluorescence. All of these and many other factors must 

be optimized to a particular technology and even to a particular experiment. Image 

analysis programs must be easily adapted to these varying parameters. 

 

3 MICROARRAY DATA PROCESSING WORKFLOW AND MANAGEMENT 

 

3.1 Microarray Data Processing Workflow 

 

Given a particular microarray technology, microarray images are generated by 

scanners using confocal laser microscopes. Each microarray image is a representation of 

the scanned microarray slide with several blocks of 2D arrays. The task is “How can one 

draw biologically meaningful conclusions based on microarray image data and 

information extracted about gene expression levels?”  

Since the invention of microarray technology in 1995 [64], researchers developed 

several microarray image processing methods, statistical models and data mining 

techniques that are specific to DNA microarray  analysis [59]. These analyses are usually 

part of a microarray data processing workflow that includes, grid alignment, spot 

segmentation, quality assurance, data quantification and normalization, identification of 

differentially expressed genes and their significance testing, and data mining. An 

example of microarray data processing workflow is illustrated in Figure 1. The subset of 
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image processing steps is enclosed with a dashed line in Figure 1. The goal of microarray 

image analysis steps is to extract intensity descriptors from each spot that represent gene 

expression levels and input features for further analysis. Biological conclusions are then 

drawn based on the results from data mining and statistical analysis of all extracted 

features.  

  

 

Figure 1: Microarray data processing workflow.  The diagram stresses the requirement to 

archive both raw and processed data. 

In this data processing workflow, one should be aware of the nature of microarray 

measurements. The raw and processed microarray measurements are not expressed in any 

objective unit but in relative intensity changes using a reference that is rarely 

standardized between experiments. Furthermore, different microarray platforms and 

experimental designs generate microarray data with various layouts.  In addition, image 
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processing parameters, normalization techniques and other statistical analyses may vary 

for each batch of data. Thus, it is critical to adopt standards that allow objective 

comparisons of (a) microarray data and (b) processing results in order to support validity 

of biological conclusions. 

A typical microarray experiment should be accompanied by (a) microarray slide 

layout and the results of image analysis (raw intensity, normalized intensity, normalized 

ratio), (b) the technology used (e.g., one color, Affymetrix GeneChips, or two color 

cDNA or Oligo microarray), (c) experiment design (common control, loop design, or 

complex loop design), and (d) normalization methods for those cases when raw image 

data are not available. Recording data processing workflow and managing information 

about data processing would help reducing the cost of unnecessary duplicate experiments 

as suggested by the microarray standardization efforts [31].  

 

3.2 Data Management 

Figure 1 also includes a database labeled as MIAME (Minimal Information About 

Microarray Experiments) compliant. The standardized database is important from a data 

management perspective since there is a need for public repositories of microarray data 

[15]. The functions of the public repositories would be in providing access to supporting 

data for research and publications based on microarray experiments. Such repositories are 

under development by the National Center for Biotechnology Information (developed the 

Gene Expression Omnibus), the DNA Database of Japan, and the European 

Bioinformatics Institute (developed ArrayExpress). However, it is less clear exactly what 

information should be stored in such databases. A consortium has already defined the 
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needs of a database standard to preserve context-rich information of microarray data. 

Starting from 1999, the Microarray Gene Expression Data Society (MGED) has been 

working to solve this problem, and the group published the MIAME standard [15]. The 

current focus is on (a) establishing standards for microarray data annotation and 

information exchange, (b) facilitating the creation of microarray databases and relevant 

software tools implementing these standards, and (c) promoting sharing of high quality, 

well-annotated data within the life sciences community. A long-term goal is to extend the 

current microarray standardization efforts to other domains of functional genomics and 

proteomics using high throughput technologies.  

The MIAME standard encompasses six areas: (1) Experimental design: the set of 

hybridization experiments as a whole. (2) Array design: each array used and each element 

(spot) on the array. (3) Samples: samples used, extract preparation and labeling. (4) 

Hybridizations: procedures and parameters. (5) Measurements: images, quantification, 

and specifications. (6) Normalization controls: types, values, and specifications. Each of 

these microarray areas contains information that can be provided using controlled 

vocabularies, as well as fields that use free-text format. 

There exist MIAME-compliant databases and commercial software packages. For 

example, a number of existing microarray databases in the public-domain claims 

MIAME-compatibility, such as BASE [62] (http://base.thep.lu.se), GeneX [54] 

(http://www.ncgr.org/genex/index.html), and MaxdSQL  

(http://www.bioinf.man.ac.uk/microarray/maxd). A couple of commercial packages, such 

as GeneTraffic (http://www.iobion.com), and Partisan ArrayLIMS 

(http://www.clondiag.com/products/sw/partisan) should be also MIAME-compliant. AS a 
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result of the standardization efforts by the MGED working groups, microarray data 

standardization specifications become more accessible, and provide the ground for 

building integrated microarray databases.  

 

 

4 MICROARRAY IMAGE LAYOUT AND FILE FORMAT 

 

4.1 Microarray Image Layout 

The layout of any microarray image is dependent on (a) the type of equipment used 

to synthesize the array and (b) considerations for image analysis. In almost all layouts, 

spots are arranged within a two-dimensional (2D) grid with spot locations defined by row 

and column or by absolute (X, Y) coordinates. Many commercial technologies may have 

a fixed layout with image analysis mechanisms optimized to the particular layout, such as 

the Affymetrix GeneChip system. Affymetrix GeneChips are designed with composite 

sequences representing a transcript of a gene, generally 11 to 20 short oligo sequences 

designed from different regions of the same transcript. Each individual oligo from the 

transcript is synthesized at different locations across the GeneChip in order to 

compensate for local variation of signal intensity. Signal or foreground intensities from 

each probe within a transcript are then combined for data analysis. Changes to these 

layouts can involve large initial investments in mask design and synthesis.  

Most spotted microarrays using print pins, inkjet or piezoelectric mechanisms have 

the flexibility to create multiple layouts. In these cases an array of pins or jets are used. 

Each printing unit, or pin, will create an individual block of spots. The number of pins 
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and arrangement in the print head can be changed and will determine the block 

arrangement on the array. The distance between spots as well as row and column 

numbers within each block can be controlled through the printing software. A grid 

analysis file is created containing data related to the number of blocks, rows and columns 

and distance between blocks; rows, columns and distances between features within 

blocks; approximate spot diameter, together with the annotation of the genes or product 

represented by each feature. Most image analysis programs also require coordinates of 

landmark spots for initial grid alignment. When planning the microarray layout, distinct 

features which will provide constitutively high fluorescent signals, such as housekeeping 

genes, may be included in the corners of each grid in order to further enhance automated 

or manual visual alignment of grids.    

4.2 Microarray Image File Formats 

Typically, laser scanning of a cDNA or oligo microarray slide generates two 16-bit 

TIFF files [71]. These two files contain information about fluorescence from red and 

green dyes. The specification for the TIFF file format version 6.0 is publicly available 

and the format is suitable for saving 1-bit (binary), 4-bit, 8-bit (byte) and 16-bit (short) 

data. The choice of 16-bits per pixel is based on the dynamic range of fluorescence 

measurements and sensitivity of laser scanners. The fluorescence values after 

amplification and analog to digital conversion should be within the interval [0, 2^16-1 = 

65,535], otherwise the high values would be truncated to the maximum (also called pixel 

saturation). The TIFF file format specification version 6.0 also includes image 

compression options (lossy Lempel-Ziv and Welch compression, lossless modified 

Huffman run-length coding). It is not recommended to use any lossy compression in 
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order to prevent spot information loss, and to avoid increased uncertainty of extracted 

spot statistics. Similarly, while microarray images are sometimes stored in other very 

common file formats, for instance, in the JPG file format using the compression 

algorithm based on discrete cosine transform (DCT) [61], one should be aware that any 

lossy compression will deteriorate microarray image processing accuracy. It is 

recommended to use microarray image file formats without lossy image compression. 

 

5 MICROARRAY IMAGE PROCESSING REQUIREMENTS 

 

In order to choose an appropriate image processing approach, one has to 

understand variations of input microarray images in terms of (1) the image content 

including foreground and background morphology (e.g., grid layout, spot location, shape 

and size), and intensity information (e.g., spot descriptors derived from foreground and 

background intensities), (2) the computer characteristics of input digital images (e.g., 

number of channels, number of bytes per pixel, file format). Figure 2 shows two 

examples of microarray images and their very different appearance. These variations 

have to be compensated by microarray image processing algorithms so that the 

processing performance meets expected accuracy and speed requirements.  

What are our expected accuracy and speed requirements on microarray image 

processing? To answer this question, we consider an ideal microarray image first. Next, 

we describe our current understanding of the sources of image variations. Finally, we set 

the image processing requirements that one should strive to meet. 
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Figure 2: Examples of microarray images with double-fluorescent (left) and 

radioactive (right) labeled samples that differ in terms of the content (spot geometry, spot 

size and intensity meaning) and computer characteristics (number of channels and 

number of bytes per pixel).  

5.1 Ideal Microarray Image 

First, let us define an “ideal” cDNA microarray image in terms of its image 

content. The image content would be characterized by deterministic grid geometry, 

known background intensity with zero uncertainty, pre-defined spot shape (morphology), 

and constant spot intensity that (a) is different from the background, (b) is directly 

proportional to the biological phenomenon (up- or –down-regulation), and (c) has zero 

uncertainty for all spots. Figure 3 shows an example of such an ideal microarray image. 

While finding such an ideal cDNA image is probably a pure utopia, it is a good starting 

point for understanding image variations and possibly simulating them [11].  
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Figure 3: Illustration of an “ideal” microarray image. 

Another aspect of an “ideal” cDNA microarray image can be expressed in terms 

of statistical confidence. If one could not possibly acquire an ideal microarray image, 

then a high statistical confidence in microarray measurements would be obtained with a 

very large number of pixels per spot (theoretically it would reach infinity). However, the 

cost of experiments, the limitations of laser scanners in terms of image resolution, storage 

of extremely high resolution images and other specimen preparation issues are the real 

world constraints that have to be taken into account. 

The above considerations about an “ideal” microarray image can be used for 

simulations [11]. Simulations of cDNA microarray images can generate data sets for 

testing multiple microarray processing algorithms since it is difficult to obtain (a) 

physical ground truth as an image valuation standard because of the image preparation 

complexity, and (b) large number of replicates of biological samples as a statistically 

significant standard because of the cost. In addition, simulations can provide scientific 

insights about various impacts of microarray preparation fluctuations on the accuracy of 

final biological conclusions. However, while simulations improve our understanding, 

they have to be verified by processing real microarray images. Another challenge with 
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simulations is related to setting input simulation parameters since they might depend on 

individual laboratory procedures and on each microarray acquisition apparatus.  

5.2 Sources of Microarray Image Variations  

Next, let us investigate sources of image variations. The cDNA technology is a 

complex electrical-optical-chemical process that spans cDNA slide fabrication, mRNA 

preparation, fluorescence dye labeling, gene hybridization, robotic spotting, green and red 

fluorophores excitation by lasers, imaging using optics, slide scanning, analog to digital 

conversion using either charge-coupled devices (CCD) or photomultiplier tubes (PMT), 

and finally image storage and archiving. It is hard to estimate the number of random 

factors in this complex electrical-optical-chemical process and hence we will list only a 

few factors. We should perhaps mention that some of the variations are temporally 

varying, some are ergodic (no sample helps meaningfully predict values that are very far 

away in time from that sample), and some appear as systematic errors more than as 

random errors. We overview a few sources of image variations observed in foreground, 

background and intensity information. 

Variations of microarray image channels: Based on the cDNA labeling type 

used during microarray slide preparation (hybridization), one can obtain, for instance, 

single-, double- or multi-fluorescent images. Most microarray data contain double-

fluorescent images from scanners that operate at two wavelengths, e.g., 532nm (red) and 

632nm (green) wavelengths forming two channels shown in Figure 2 left. In general, 

microarray image data can consist of any number of channels. It is possible to foresee the 

use of more than two or three channels in future, for example, by using hyperspectral 

imaging [10].  



 15

Another variation of microarray image channels is the storage file format, data 

compression and data accuracy (number of bytes per pixel). For example, a storage file 

format with lossy data compression introduces undesirable spatial blur of spots and the 

microarray image analysis becomes less accurate. Similarly, the number of bytes per 

pixel has to accommodate the dynamic range of an analog signal produced by the red or 

green fluorophores excitation due to laser illumination. Dynamic range corresponds to the 

maximum minus minimum measured amplitude, and any value outside of the range [min, 

max] will be mapped to either min or max. For a fixed number of bytes and increasing 

dynamic range, the uncertainty of each intensity measurement increases. In other words, 

the bins for all analog values converted to the same digital number are becoming wider.  

 

Figure 4: Illustration of data accuracy, uncertainty and dynamic range dependencies.  

In general, microarray image processing algorithms should be able to handle any 

number of input channels, file format and data accuracy. It should be understood that 

image analysis results will contain some uncertainty due to file storage and datum 

accuracy constraints.  
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Variations of grid geometry: A microarray slide preparation should be 

considered as one source of variation in grid geometry [20],  [39], and [76]. For example, 

it is important to know that if a spotting machine with several dipping pins prints multiple 

2D arrays of spots, then the dipping pins might bend over time and cause irregularity in a 

2D arrangement of the printed spots [20]. Similarly, any rotational offset of a slide or 

dipping pins will cause a rotated 2D grid in a microarray image with respect to the image 

edge. Figure 5 shows an example of a rotated sub-grid with irregularly spaced rows and 

columns.  

 

Figure 5: Irregularly spaced and rotated grid geometry of microarray spots. 

Other sources of variations in spot locations are the slide material, such as nylon 

filters, glass slides, and probe types, such as radioactively labeled probes and 

fluorescently labeled probes [69]. These variations can be caused (a) by mechanical strain 

(nylon filters), or (b) by low discrimination power for small surface areas (glass slides), 

strong background signal (fluorescently labeled probes) or strong signal interference of 

neighboring spots (radioactively labeled spots). The variations due to mechanical strain 

introduce warping into the grid geometry. It is important to understand the strain extreme 

cases in order to limit the search space of grid geometry.  
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Due to a small discrimination power, many spots might not be detected [20]. 

Figure 2 illustrates that many spots might be missing from a 2D array because spot 

signals are undistinguishable from the background. The absence of spots in a grid poses a 

challenge for automated grid alignment in addition to other spot location variations. 

Clearly, missing spots decrease the likelihood of successfully identifying grid 

configurations by any data driven approaches because of a smaller amount of grid 

evidence. For example, a fully automated grid alignment method would fail to detect 

correctly a grid if one row of spots from the grid along its border would be completely 

missing (no evidence about the row existence as illustrated in Figure 6).  

 

Figure 6: Four sub-grids on one microarray slide. The lower right sub-grid has one less 

row than other sub-grids. 

Variations of background: Background variations occur due to (a) microarray 

slide preparation (hybridization and spotting errors), (b) inappropriate acquisition 

procedures (presence of dust or dirt), and (c) image acquisition instruments (non-linearity 
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of imaging components). While the (a) and (b) types of background variations should be 

detected by microarray quality assurance (see example in Figure 7), the variation due to 

image acquisition instruments cannot be removed by a user. Thus, many image 

processing algorithms compensate for background variations by modeling its probability 

distribution function (PDF). The most frequent model is the Gaussian PDF (also denoted 

as Normal PDF) [11]. Other statistical models to consider would be a uniform PDF or a 

functional PDF depending on the observed properties of acquired images. For instance, a 

functional PDF could simulate a positive or negative slant surface function (background 

intensity shading) that would be combined with spike noise, where spike noise intensities 

follow an exponential distribution. Figure 8 shows background examples that could be 

modeled by Normal or Student’s t PDF models. It is also necessary to mention that while 

all channels of microarray images might follow the same PDF, each channel would likely 

have different parameters for the chosen PDF model.  

 

Figure 7: Background variation due to slide washing that should be detected by quality 

assurance. 
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Figure 8: Examples of background noise that could be modeled with PDF models of 

noise.  (Normal PDF – left and Student’s t PDF – right). 

Variations of spot morphology: Another issue to mention is the shape of 

microarray grid elements (or grid shape primitives). Although the majority of current 

cDNA microarray imagery is produced with circular spots as shape primitives, one can 

find the use of other primitive shapes, e.g., lines or rectangles (see the CLONDIAG chip 

[23]). It is very likely that other primitive shapes than a round spot shape will be used in 

microarray technology in the future. Figure 9 shows examples of rectangular and 

triangular shapes. 

  

Figure 9: Examples of spot morphologies other than circular. 

For the currently most common circular spots, there exists a large number of 

shape deviations (equals to the total number of foreground and background pixel 
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combinations inside of a grid cell). Figure 9 shows a few classes of morphological 

deviations as found in microarray images. There are many more spot deviations that have 

to be analyzed during spot quality assessment in order to determine a validity of 

measured spot information and our confidence in deriving any conclusions based on the 

spot measurement. The spot deviation analysis helps identifying success and failure of a 

particular spot experiment. 

  

Figure 10: Spatial and morphological variations of spots (from left to right, top row first): (a) 

a regular spot, (b) an inverse spot or a ghost shape, (c) a spatially deviating spot inside of a 

grid cell, (d) a spot radius deviation, (e) a tapering spot or a comet shape, (f) a spot with a 

hole or a doughnut shape, (g) a partially missing spot and (h) a scratched spot. 

Variations of foreground and background intensities: Foreground and 

background intensity variations are also present in microarray image analysis due to slide 

materials and several labeling techniques. For example, while the fluorescent labeling 

type leads to microarray images with dark background and bright spots (signal), other 

labeling types with or without radio-isotopic labels lead to images with bright 

background and dark spots (see Figure 2 right). A slide material introduces another 

intensity variation, for example, coated glass slides or nylon membrane or silicon chips. 

One should understand that it is the background and foreground intensity difference that 

is relevant to the biological meaning.  However, the range of the intensity difference 

(max – min) and the amplitude of background and foreground variations affect the 
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discrimination of these two classes, as well as our confidence in accurate separation of 

background and foreground. 

Although we described variations of background and the dark-bright schemes for 

background and foreground, we did not address the issue of foreground spot intensity 

variations. The reason for this is that microarray images often represent experiments of a 

discovery type. When discovering biological properties, one cannot predict measurement 

outcomes such as spot intensity profiles. Thus, one should only adjust parameters of 

measurement instruments to fully cover the dynamic range of spot intensities so that 

intensity values are not saturated and possibly discernable from others. As of now, 

intensities of each spot are modeled according to our previously described ideal 

microarray image but future research might reveal additional information in the intensity 

profiles of individual spots. 

5.3 Summary of Microarray Image Processing Requirements 

After reviewing variations of microarray images, one would like to design 

automated microarray image processing algorithms that are robust to all variations. The 

robustness would include (1) any number of channels, (2) any storage and computer 

representation, (3) variable grid and spot locations, (4) unknown background noise, (5) 

variable background and foreground dark-bright schemes, (6) deviations from spot 

shapes and (7) deviations from expected spot intensity profiles. Furthermore, the 

processing algorithms should recognize those cases when missing spots disable 

automation (or accurate automated image processing) because of the lack of grid 

evidence. 
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For anyone who performs scientific experiments with microarray technology, it is 

important to guarantee microarray image processing repeatability. Assuming that an 

algorithm is executed with the same data, we expect to obtain the same results every time 

we perform an image processing step. In order to achieve this goal, algorithms should be 

“parameter free” so that the same algorithm can be applied repeatedly without any bias 

with respect to a user’s parameter selection. Thus, for instance, any manual positioning of 

a grid template is not only tedious and time-consuming but also undesirable since the grid 

alignment step cannot then be repeated easily. A concrete example of the repeatability 

issues is presented in [50], where authors compared results obtained by two different 

users from the same slide (optic primordial dissected from E11.5 wild-type and aphakia 

mouse embryos) while using the ScanAlyze software package [34]. Each user provided 

the same input about grid layout first, and then placed multiple grids independently and 

refined the spot size and position. The outcome of the comparison led up to two-fold 

variations in the ratios arising from the grid placement differences.  

Finally, the amount of microarray image data is growing exponentially and so one 

is concerned about preparing sufficient storage and computational resources to meet the 

requirements of end users. For example, finding a grid of spots can be achieved much 

faster from a sub-sampled microarray image (e.g., processing one out of 5x5 pixels), but 

the grid alignment accuracy would be less than if the original microarray image had been 

processed. There are clearly tradeoffs between computational resources (memory and 

speed/time) and alignment accuracy given a large number of microarray images [8]. 

While this issue might be resolved without any accuracy loss by using either 

supercomputers or distributed parallel computing with grid-based technology [37], it 
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might still be beneficial to design image processing algorithms that could incorporate 

such resource limitations. 

 

6 GRID ALIGNMENT METHODS 

 

A grid alignment (also known as addressing or spot finding [14] or gridding [76]) 

is one of the processing steps in microarray image analysis that registers a set of unevenly 

spaced, parallel and perpendicular lines (a template) with the image content representing 

a two-dimensional (2D) array of spots [8]. The registration objective of the grid 

alignment step is to find all template descriptors, such as, line coordinates and their 

orientations, so that pairs of perpendicular lines intersect at the locations of a 2D array of 

spots in a microarray scan. Furthermore, this step has to identify any number of distinct 

grids of spots in one image.  

There are two views on microarray grid alignment. First, grid alignment methods 

could be viewed in terms of automation as manual, semi-automated and fully automated 

[29, Chapter 3], [46, Chapter 6]. Second, grid alignment techniques could be viewed in 

terms of their underlying image analysis approaches as template-based and data-driven 

[8].  

6.1 Automation Level of Grid Alignment Methods 

Manual grid alignment methods: Given the fact that one expects a spot 

geometry to be very similar to a grid (or a set of sub-grids), a manual alignment method 

is based on a grid template of spots. A user specifies dimensions of a grid template and a 

radius of each spot to form a template. Computer user interfaces like a computer mouse 
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are available for adjusting the pre-defined grid template to match the microarray spot 

layout.  

To compensate for many microarray image variations described in the previous 

section, one could possibly obtain “perfect” grid alignment assuming that human-

computer interface (HCI) software tools are built for adjusting shape and location of each 

spot individually. It is apparent that this approach for grid alignment is not only very time 

consuming and tedious, but also almost impossible to repeat or use for high-throughput 

microarray image analysis.   

Semi-automated grid alignment methods: In general, there are some parts of 

grid alignment that can be reliably executed by computers, but other parts that are 

dependent on user’s input. One example would be a manual grid initialization (selection 

of corner spots, specification of grid dimensions), followed by automated search for grid 

lines and grid spots [76]. The automated component can be executed by using either a 

grid template that is matched to the image content with image correlation techniques, or a 

data-driven technique that assumes intensity homogeneous background and 

heterogeneous foreground. The benefits of semi-automated grid alignment methods 

include reductions of human labor and time, and an increase of processing repeatability.  

Nevertheless, these methods might not suffice to meet the requirements of high-

throughput microarray image processing. 

Fully-automated grid alignment methods: These methods should reliably 

identify all spots without any human intervention based on one-time human setup. The 

one-time setup is for incorporating any prior knowledge about an image microarray 

layout into the grid alignment algorithms in order to reduce their parameter search space. 
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Many times, the challenge of designing fully-automated grid methods is to identify all 

parameters that represent prior knowledge and quantify constraints for those parameters. 

Typically, these methods are data driven and have to optimize internally multiple 

algorithmic parameters in their parameter search space to compensate for all previously 

described microarray image variations.  

While it is everyone’s ultimate goal to design fully automated grid alignment 

methods, one has to understand that these methods depend entirely on data content. For 

example, if there is a missing line of spots (spot color is indistinguishable from 

background) then an algorithm would not be able to find any supporting evidence for a 

grid line. One approach to this problem is the assignment of algorithmic confidence 

scores to each found grid. Grids with low confidence can be set aside for further human 

inspection whereas the grids with high algorithmic confidence can be processed without 

any human intervention.  Another approach is to build into a microarray image some 

fiduciary spots that could guide image processing and provide a self-correction 

mechanism.  

6.2 Image Analysis Approaches to Grid Alignment 

6.2.1 Template-Based Approaches 

The template-based approach is the most prevalent in the previous literature and 

existing software packages, e.g., GenePix Pro by Axon Instruments [4], ScanAlyze [34], 

or GridOnArray by Scanalytics [65]. Most of the currently available software packages 

enable manual template matching [4] (GenePix), [34] (ScanAlyze), [20] (Dapple), by 

adjusting spot size, spot spacing and grid location. Some software products already 

incorporate an automatic refinement search for a grid location given size and spacing of 
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spots [4] (GenePix), [57] (QuantArray). The refinement is executed by maximizing 

correlation of (1) an image template formed based on user’s inputs and (2) the processed 

microarray image over a set of possible template placements (e.g., translated and rotated 

from the user defined initial position). It is possible to employ deformable templates and 

Bayesian grid matching [42] to achieve certain data driven flexibility into grid alignment.  

The template-based approach is viewed as appropriate if the measured grid 

geometry does not deviate too much from the expected grid model as defined by a 

template [65]. If measured spot grids are unpredictably irregular then this approach leads 

to (a) inaccurate results or (b) unacceptable costs for creating grid templates that would 

be custom-tuned to each batch of observed grid geometries. An example of alignment 

inaccuracies is shown in Figure 11. 

  

Figure 11:  Template-based alignment results obtained by visually aligning the left two 

columns (left) or the right two columns (right) of microarray spots.  
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6.2.2 Data-Driven Approaches 

There are several components of data-driven algorithms and each component 

solves one part of the grid alignment puzzle. We overview basic components of such 

data-driven algorithms for grid alignment. 

Finding grid lines: The first “core” component that finds grid lines is (a) based 

on statistical analysis of 1D image projections [7], [25], [45], [69], or (b) used as part of 

image segmentation algorithms [48], [53]. The algorithmic approach based on 1D image 

projections consists of the following steps [8], [69]. First, a summation of all intensities 

over a set of adjacent lines (rows or columns) is computed and denoted as a projection 

vector. Second, local extremes (maxima for bright foreground or minima for dark 

foreground) are detected within the projection vectors. These local extremes represent an 

approximation of spot centers. The tacit assumption is that the sought lines intersect a 

large number of high contrast and low contrast areas in contrary to the background that is 

assumed to be intensity homogeneous with some superimposed additive noise. Third, a 

set of lines is determined from the local extremes by incorporating input parameters (e.g., 

number of lines) and by finding consistency in spacing of local extremes. Fourth, all 

intersections of perpendicular lines are calculated to estimate spot locations. The input 

microarray intensities can be pre-processed to remove dark-bright schema dependency 

(e.g., by edge detection [8]), or to enhance contrast of spots (e.g., by matched filtering or 

spot amplification [14]). Figure 12 illustrates 1D projections derived from a pre-

processed image by Sobel edge detection algorithm [61]. 
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Figure 12: A microarray image (left) and its 1D projection scores (modified summations) 

derived from the original image after pre-processing by Sobel edge detection.   

The other algorithmic approach to finding grid lines that is based on image 

segmentation [53] uses adaptive thresholding and morphological processing to detect 

guide spots. The guide spots are defined as the locations of good quality spots (circular in 

shape, of appropriate size and intensity consistently higher than the background), for 

instance, the spots in Figure 13. With the help of guide spots and given the information 

about microarray layout, the final grid can be estimated automatically. The drawback of 

this approach is the assumption about the existence of guide spots and the absence of 

spurious “spots” due to contamination. Other segmentation–based approach reported in 

[48] uses region growing segmentation to obtain partial grids that are then evaluated by 

grid hypothesis testing. 

 

  

Figure 13: An example of guide spots as used in [53].  



 29

Processing multiple channels: The second component of data-driven methods 

tackles usually the problem of fusing multiple image channels (also called bands). The 

fusion problem could include cross-channel registration issues since each channel is 

acquired at a different time, and a spatial offset might occur between the acquisitions. 

Furthermore, the fusion problem has to bring together either input channels for grid 

alignment or the results of grid alignment obtained for each channel separately. The 

former fusion problem can be approached by standard registration techniques. The latter 

fusion problem could be solved by performing a logic OR operation [8] as illustrated in 

Figure 14, or by linear combination weighted by the median values [76]. The fusion of all 

channels with logic Boolean OR operator will propagate foreground and background 

intensity variations into the grid alignment algorithm and increase its robustness 

assuming that there is little spurious variation in the background. The option of fusing 

channels beforehand reduces multi-channel computation and avoids the problem of 

merging multiple grids detected per each channel. 

    

Figure 14: Microarray images of red (left) and green (middle) channels that are fused by 

Boolean OR function before processing (right). 

Estimating grid rotation: The third component of data-driven methods addresses 

the problem of grid rotation. One approach to this problem is an exhaustive search of all 

expected rotational angles [8]. This approach is motivated by the fact that the range of 
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grid rotations is quite small, and therefore the search space is small. An initial angular 

estimate can be made by analyzing four edges of a 2D array [69]. The disadvantage of 

this approach is that small angle image rotations introduce pixel distortions because 

rotated pixels with new non-integer locations are rounded to the closest integer location 

(row and column). Another approach to the grid rotation problem is the use of discrete 

Radon transformation [14]. In this case, the grid rotation angle is estimated by (a) 

performing projections in multiple directions (Radon transformation) and (b) selecting 

the maximum median projection value. While Radon transformation is computationally 

expensive, a significant speed-up can be achieved by successive refinement of angular 

increments and limiting the range of angular rotations. 

Finding multiple grids: The fourth component of data-driven methods tackles the 

problem of multiple grids or multiple distinct 2D sub-arrays of spots. These distinct grids 

are also arranged in a 2D array format, thus the number of expected distinct grids can be 

defined by the number of grids along horizontal (row) and vertical (column) axes. These 

numbers can be specified as input parameters since they are considered to be our prior 

knowledge about microarray slides. Given the input parameters, an algorithm has to 

partition an original image into sub-areas containing individual grids. Due to the nature of 

most frequently occurring microarray images, one approach is to divide the original 

images into rectangular sub-areas based on the input parameters and process each sub-

area separately.  

If the input parameters are not available then the problem can be approached by 

treating the entire image as one grid, searching for all irregular lines in the entire image, 

and then analyzing the spacing of all found mutually perpendicular grid lines [8]. Every 
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large discontinuity in the line spacing will indicate the end of one and beginning of 

another sub-grid (2D arrays of spots). An example result is shown in Figure 15.  

   

Figure 15: An example result of processing the original image (left) with the proposed 

algorithm and analyzing discontinuities in line spacing (right) to partition the original 

image into sub-images containing one sub-array per sub-image. 

Speed and accuracy tradeoffs: Another optional component of data-driven 

methods could incorporate the speed and accuracy tradeoffs by image down-sampling 

option. It is well known that the speed of most image-processing algorithm is linearly 

proportional to the number of pixels since every pixel has to be accessed at least once and 

processed in some way. If two microarray images of the same pixel size and with the 

same content would contain NxM spots of radii R1 (image 1) and R2 (image 2), such that 

R1<R2, then the alignment of image 2 with spots of radius R2 could be performed faster 

by R1/R2 sub-sampling without any loss of accuracy with respect to the alignment 

performed on image 1. From this follows that the tradeoff between speed (or 

computational requirements) and grid alignment accuracy is also a function of spot size. 

In practice, down-sampling (or local averaging) is preferred instead of sub-sampling in 

order to preserve local spot information that could be completely eliminated by sub-

sampling. 
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Repeatability and parameter optimization: In order to introduce fully 

automated methods and hence microarray image processing repeatability, it is necessary 

to address the issue of algorithmic parameter optimization. The first part of this task is to 

discriminate one-time setup parameters, e.g., number of grids or number of lines, from 

the data dependent parameters, e.g., size of spatial filters or noise thresholds. Next, it is 

beneficial to limit the ranges of the parameters that should be optimized by specifying 

their lower and upper bounds, e.g., grid angular rotation. This step reduces any 

unnecessary computation cost during optimization. Finally, an optimization strategy has 

to be devised so that a global optimum rather than a local parameter optimum is found for 

a given “optimality” metric. 

While the benefit of parameter optimization is a fully automated grid alignment 

tool, the drawback of optimization is the need for more computation and hence slower 

execution speed. From a system performance view point, it is desirable to create optional 

user-driven inputs for algorithmic parameters in order to incorporate any prior knowledge 

about microarray image layout. Users that do not specify any microarray layout 

information will use more computational resources than users that partly describe input 

data. Nonetheless, the availability of optional algorithmic inputs and embedded parameter 

optimization techniques let end users decide between the two application extremes, such 

as real-time performance with limited computational resources and off-line processing 

with supercomputing resources. 

 Incorporating prior knowledge about grids: The most common prior 

knowledge about microarray layout includes number of grids (along rows and along 

columns), number of lines per grid, and perhaps spot radius. Other inputs about corner 
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spot locations, line spacing, grid rotation or background characteristics should be easily 

incorporated into grid alignment algorithms. It is also possible that an irregularly spaced 

grid as detected by a data-driven method should be overruled by a strict regularity 

requirement on the final grid. For example, due to our prior knowledge about printing, 

the requirement to generate a grid with equally spaced rows could be incorporated into 

the final grid by (a) computing a histogram of distances between adjacent already 

detected rows, and (b) selecting the most frequent distance as the most likely correct row 

spacing [8]. One can then choose the row with the highest algorithmic confidence (score) 

as the initial location and place the final grid according to the regularity constraint.  

The data-driven approaches are capable of finding irregular grids but are prone to 

misalignment due to spurious or missing spots and are also dependent on many 

parameters. One can achieve significant cost savings with data-driven approaches when 

the majority of microarray slides meet certain quality standards and a fully automated 

algorithm flags images that are beyond its reliable processing capability. 

 

7 FOREGROUND SEPARATION 

 

The outcome of grid alignment is an approximation of spot locations. A spot location is 

usually defined as a rectangular image area enclosing one spot (also denoted as a grid 

cell). The next task is to identify pixels that belong to foreground (signal) of expected 

spot shape and to background.  We refer to this task as foreground separation and it 

involves image segmentation and clustering.  
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The term image segmentation is associated with the problem of partitioning an 

image into spatially contiguous regions with similar properties (e.g., color or texture), 

while the term image clustering refers to the problem of partitioning an image into sets of 

pixels with similar properties (e.g., intensity or color or texture) but not necessarily 

connected. The objective of segmentation inside of a grid cell is to find one segment that 

contains the foreground information. If a spot could be formed by a set of non-contiguous 

regions/pixels, then image clustering can be applied. While microarray image 

segmentation and clustering problems result in grouping pixels based on intensity 

similarities, it is quite frequent to use a spatial template-based separation, where the 

template follows a spot shape model. We should also mention foreground separation 

methods that assign foreground and background labels to pixels based on both intensities 

and locations.  

We describe next the foreground separation methods using (1) spatial templates, 

(2) intensity based clustering, (3) intensity based segmentation, and (4) spatial and 

intensity information. We also address the issue of foreground separation from multi-

channel microarray images.  

7.1 Foreground Separation Using Spatial Templates 

This type of signal separation assumes that a spot is centered inside of a grid cell and it 

closely matches the expected spot morphology. The spatial template consists typically of 

two co-centric circles, where the pixels inside of the smaller circle are labeled as 

foreground (signal) and the pixels outside of the larger circle are labeled as background 

(see Figure 16). All pixels in between of the two co-centric circles are viewed as 

transition pixels and are not used. Clearly, this type of foreground separation will fail for 
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spots with varying radii or spatial offsets from the grid cell center, and will include all 

pixels with artifacts (e.g., dust particles, scratches, or spot contaminants). The 

consequence of poor signal separation will lead to artificially increased background level 

and distorted signal to background ratio. A quantitative comparison of the results 

obtained from circular spots and segmented spots can be found in [45]. 

 

Figure 16:  Illustration of a grid cell and the separation using spatial co-centric circular 

templates. 

7.2 Foreground Separation Using Intensity Based Clustering 

 This type of signal separation boils down to a two class image clustering problem 

(or image thresholding) [69]. Image thresholding is executed by choosing a threshold 

intensity value and assigning the signal label to all pixels that are above the threshold 

value (or below depending on a microarray image dark-bright scheme). The threshold 

value can be chosen by computing the expected percentage of spot pixels inside of a grid 

cell based on the knowledge about image resolution and spot radius. The thresholding 

approach can be viewed as clustering by determining a cluster separation boundary. 
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Other clustering approaches use cluster intensity representatives, for instance, K-means 

or K-medoids [40], and the similarity between any intensity and the particular 

representative in order to assign pixel label (cluster membership). These methods can 

also be applied to the foreground separation problem [13].   

Let us consider an example with thresholding. If a spot physical radius is about 

one micrometer and the microarray image resolution is 10 pixels per micrometer, then a 

spot area is equal to 314 pixels (π*radius^2). For a spot spacing (center to center) equal to 

twice the spot diameter (4 micrometers or 40 pixels), we can estimate the percentage of 

spot pixels as 314*100/(40x40)= 19.63% (spot area divided by grid cell area). Thus, an 

intensity threshold value would be equal to 19.63%*(max intensity – min intensity). This 

approach performs well when all pixels inside of a spot are different from the 

background. It fails for spots with varying radii, low contrast and high noise.  

Figure 17 shows examples of accurate and inaccurate foreground separation. In 

this example, we used an advanced K-means clustering algorithm [7] that iteratively re-

assigns foreground and background pixel labels untill the cluster’s centroid intensities do 

not change significantly. 

    

Figure 17: Examples of accurate (left – original image, and second from left - label 

image) and inaccurate (second from right – original image, and right – label image) 

foreground separation using intensity based clustering. The results were obtained using 

the Isodata (advanced K-means) algorithm [7]. 
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7.3 Foreground Separation Using Intensity Based Segmentation 

 There are many segmentation methods available in the image processing literature 

[61, Chapter 6], and we will describe only those that have been frequently used with 

microarray images, such as seeded region growing and watershed segmentation.   

Seeded region growing segmentation starts with a set of input pixel locations 

(seeds) [76], [25].  The segmentation method groups simultaneously pixels of similar 

intensities with the seeds to form a set of contiguous pixels (regions). The grouping is 

executed incrementally for a decreasing similarity threshold. The segmentation is 

completed when all pixels have been assigned to one of the regions grown from the initial 

seeds. In the case of microarray images, the foreground seed could be chosen either as the 

center location of a grid cell or as the maximum intensity pixel inside a grid cell. 

Similarly, the background seed could be selected either as the middle point between two 

spots or as the minimum intensity pixel inside a grid cell.  

Morphological segmentation by watershed transformation is based on image 

operators derived from mathematical morphology [3]. There are two basic operators, 

dilation and erosion, and two composite operators, opening and closing. These operators 

are frequently used for filtering light or dark image structures according to a pre-defined 

size and shape. In the case of microarray images, morphological operators can filter out 

structures that deviate too much from the expected shape and size of a spot. Segmentation 

by watershed transformation can be viewed as the analysis of a grid cell intensity relief 

consisting of (a) no peak (missing spot), (b) one peak (clear spot) and (c) multiple peaks 

(vague spot). The case of multiple peaks is treated by searching for peak separation 

boundaries with the morphological operators that mimic watersheds (flooding image 
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areas below peaks). The outcome of the segmentation step is the region that corresponds 

to the most likely spots according to the morphological analysis of grid cell image 

intensities.  

The main difference between foreground separation using clustering and using 

segmentation is illustrated in Figure 18. If a spot segment (region) is correctly identified 

then the segmentation approach will exclude dark pixels from the foreground assuming 

that they are surrounded by a connected set of pixels. In contrary, the clustering approach 

will include to the foreground cluster pixels that belong to the background or the intensity 

transitioning area. These pros and cons can be seen in the middle and right images in 

Figure 18. 

   

Figure 18:  An example of pros and cons of foreground separation using intensity based 

clustering and segmentation. Left – original image, middle – segmentation result and 

right – clustering result. The results were obtained using the Isodata (advanced K-means) 

[72] and region growing algorithms [7]. 

Another issue to consider while choosing the most appropriate foreground 

separation technique is the priority order for selecting correct foreground pixels. There 

are certain grid cells where multiple interpretations are plausible as illustrated in Figure 

19. If two segments of approximately the same size are detected inside of a grid cell (see 

Figure 19) then should we select (a) the brighter segment or (b) the segment with less 
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irregular shape or (c) the segment closer to the grid center? If a scratched spot consisting 

of two half disks is considered as a valid spot then should we include into foreground all 

segments of the same intensity that are close to or connected to the main segment 

positioned over the grid center? These decisions require ordering priorities in terms of 

expected region intensity, location and spot morphology. 

    

Figure 19: Multiple interpretations of the original grid cell image on the left side. The 

interpretation can vary based on prior region intensity and/or location and/or morphology 

information. 

7.4 Foreground Separation Using Spatial And Intensity Information (Hybrid 

Methods) 

 Several foreground separation methods try to integrate the prior knowledge about 

spot morphology (spatial template), spot location and expected intensity distribution. 

These methods could be viewed as a sequence of steps consisting of segmentation or 

clustering image partitions, spatial template image partitions, statistical testing, and 

foreground/background trimming. 

Spatially constrained segmentation and clustering: For instance, foreground 

separation using segmentation leads to a connected region that is fitted to a spatial 

template [53]. If the best-fitted circle deviates too much from the template then the spot is 

labeled as invalid. Another example would be foreground separation using clustering 
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with additional minimization constrain on cluster dispersion [13]. The particular choice 

of clustering could be the partitioning method based on K=2 medoids (PAM) with 

Manhattan distance as the similarity metric. This method in [13] was reported to be 

robust to the presence of noise in microarray images. 

Mann-Whitney statistical testing: This foreground separation algorithm is 

executed by randomly selecting N pixels from the background and N pixels with the 

lowest intensities from the foreground over an expected spatial template of a spot [22]. 

Next, the two sets of pixels are compared according to the Mann-Whitney test [67, Test 

12] with critical values of 0.05 or 0.01. The Mann-Whitney non-parametric test is a 

technique designed for evaluating a hypothesis whether or not two independent samples 

represent two populations with different median values. Iteratively, the darkest 

foreground pixels are replaced with those pixels that have not yet been chosen, and 

evaluated until the Mann-Whitney test satisfies the statistical significance criteria. The 

foreground separation is then achieved by selecting all pixels with higher intensities than 

the background pixels that passed the statistical significance test. It is apparent that this 

method relies on good selections of background pixels but incorporates our prior 

knowledge about spot template and expected intensity distributions. Unfortunately, this 

method cannot detect the presence of artifacts that bias the foreground separation results. 

Spatial and intensity trimming: This approach is based on analyzing intensity 

distributions of foreground and background pixels as defined by a spatial template and 

then discarding those pixels that are classified as distribution outliers [29, Chapter 3]. 

Spatial trimming is achieved by initial foreground and background assignments over a 

spot template while intensity trimming is accomplished by removing pixels with intensity 
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outliers with respect to foreground and background intensity distributions. The goal of 

spatial and intensity trimming is to remove (a) contamination pixels (e.g., dust or dirt) in 

foreground and background regions, and (b) artifact pixels (e.g. doughnut spot shape) in 

foreground region. Figure 20 illustrates a couple of examples where contamination pixels 

would skew the resulting gene expressions if they would not be trimmed off.  

  

Figure 20: A couple of grid cell examples where contamination pixels have to be 

trimmed. 

The trimming approach is similar to Mann-Whitney statistical testing but the 

statistical testing of the trimming method is applied to foreground and background pixels 

(intensity distribution analysis) instead of only to background pixels in the case of Mann-

Whitney statistical testing. The spatial trimming can be improved by using two co-centric 

circles that define foreground, background and transient pixels. The transient pixels are 

eliminated from the analysis since they are not reliable. During intensity trimming, the 

choice of intensity threshold values that divide distribution outliers from other intensities 

depends on a user and the values are related to a statistical confidence. Empirically, a 

good performance is obtained when the threshold values eliminate approximately 5-10% 

of each, foreground and background, cumulative distributions [29, Chapter 3]. However, 

this approach should not be used when a spot size is very small (3-4 pixels in diameter) 

since the underlying statistical assumption of this analysis is the use of a sufficiently large 
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number of samples (pixels). For example, for a spot of the radius equal to two pixels, 

there would be only π*2^2=12.57 foreground pixels, and the number of foreground 

outliers would be 5%*π*2^2= 0.63 pixel. 

7.5 Foreground Separation From Multi-Channel Microarray Images 

During the foreground separation step, one has to address the issue of multi-channel 

processing. For example, the red and green input image channels from a cDNA slide can 

be treated separately or together.  Let us consider the foreground separation using 

intensity thresholding. The foreground separation threshold values can be computed by 

considering (1) Euclidean distances to each pixel represented as a two-dimensional 

intensity vector (hypersphere separation), (2) intensities for red and green channel pixels 

separately (volume separation), (3) correlated intensities for red and green channel pixels 

(hyperplane separation), or (4) intensities of pixels after fusing red and green channels 

with some non-linear operators (e.g., after fusing with the Boolean OR operator). 

Depending on the choice of thresholding approach, the foreground separation boundary 

for a two-channel microarray image will lead to circular, rectangular, linear or non-linear 

curves as illustrated in Figure 7 and Figure 8 

 

Figure 21: Visualization of four types of separation boundaries for foreground versus 

background using intensity based thresholding. From left to right: hypersphere, volume, 

hyperplane and point in a projected space as boundary types. 
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Figure 22: Possible foreground separation boundaries for two-channel input data. 

Each of the aforementioned separation boundaries leads to a different set of spot and 

background labels. One should be aware of different statistical assumptions about a joint 

PDF of multiple channels associated with each separation boundary. A few examples of the 

results obtained using multiple boundary types are shown in Figure 23. As expected, the total 

count of foreground pixels varies based on the multi-channel separation method; sphere-

15913, volume-509, plane-15877, nonlinear AND – 13735 and nonlinear OR – 16045 

(400x400 image size, two bytes per pixel). 

 

 

  



 44

Figure 23: Examples of the results for spot versus background separation obtained from 

the two-channel input image shown in the top row (left) with multiple boundary types; 

hypersphere (top row, middle), volume (top row, right), hyperplane (bottom row, left), 

nonlinear after AND operation (bottom row, middle) and nonlinear after OR operation 

(bottom row, right). 

  

 

8 SPOT QUALITY ASSESSMENT 

 

 

The main goals of image-based spot quality assessment (or grid screening) are (1) to identify 

grid cells that contain valid spots, and (2) to eliminate invalid spots from further analysis. In 

order to detect invalid or defective spots, one has to define (a) spot validity criteria (metrics), 

for example, as deviations from the “ideal” microarray image (see Section 5.1), and (b) the 

deviation threshold values separating valid and invalid spot categories. In general, criteria for 

evaluating spot validity can be divided into two classes. The first class of spot validity 

criteria is for assessing foreground and background intensities. It includes assessing (a) 

absolute background and foreground levels, (b) background variation, (c) foreground 

saturation and (d) foreground-to-background intensity ratio (or signal-to-noise ratio). The 

second class is for evaluating morphological properties of foreground, such as spot shape and 

size irregularities, or spot location (position offset).  

In addition to spot quality assessment, one would like to understand the relationships 

between the detected defects of invalid spots and the sources of those detected defects in the 
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microarray experiments. This type of analysis is usually referred to as spot quality control. 

While spot quality assessment is necessary for generating reliable data and for automation of 

high-throughput microarray systems, it is really our ultimate goal to analyze spot defects and 

prevent their occurrence in future. For example, according to [30, Table 1], one could relate 

sources of microarray experiment fluctuations with certain defects, e.g., a non-specific 

background factor would be related to the occurrence of spatially bleeding spots, or an 

amplification (PCR protocol) would be related to the occurrence of saturated spots.  

In this section, we will focus only on image-based spot quality assessment (or valid 

spot detection) since spot quality control is still an active area of research. We will provide a 

brief description of a few commonly used quality assessment criteria that represent a subset 

of numerous quality assessment definitions and quality criterion variations found in the 

literature [75], [46], [76], [28], and [29]. The criteria presented here can be combined with 

other spot quality control techniques, for example, those that are based on spiked genes or 

housekeeping genes, and those that are based on spot replicas. 

8.1 Criteria for Assessing Background and Foreground Intensities  

Background intensity variations: There are two types of background variation 

criteria. First, local and global background variability metrics are designed for assessing 

local and global background noise. The metrics are indirectly proportional to the 

background variation, for instance, defined as a multiplicative of the background 

estimates of standard deviation [75]. While the local metrics can detect the presence of 

contaminants in a grid cell, the global metrics provide indications about variations across 

an entire microarray slide.  
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Second, the metrics that relate local and global background variations can detect 

excessively high local background within a slide. These metrics are designed based on 

the observation that some grid cells might have higher average background noise than the 

overall slide. For example, according to the designed formulas below [4], the quality 

metric q would approach one for valid spots and zero for invalid spots.  

& 1 & 2;
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LOC GLOB LOC GLOBBKG BKG
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BKG BKG BKG BKG

mq q
m m

µ
µ µ
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(1) 

where q is the quality metric, m is a median, µ is a mean. The notation of FRG refers to 

foreground and BKG to background.  

Foreground and background intensity uniformity: It is assumed in this case 

that foreground and background should have uniform intensity distribution. In other 

words, a large variation of foreground intensities indicates less trustworthy spot. 

Similarly, a large variation of background intensities might signal noise in slide 

preparation. Thus, for detecting foreground defects, one could use the statistical metric 

provided in Equation (2) [29, Chapter 3]. The metric approaches one for valid spots (zero 

variance), and compensates for the fact that spots with higher intensity magnitudes might 

have larger variations (division by the foreground sample mean).  

1STAT FRG
FRG

FRG

q σ
µ

= −  

(2) 

where q is the statistical quality metric, µ is the mean and σ is the standard deviation of 

foreground pixels (FRG). 
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Another pair of metrics for foreground and background relates absolute intensity values 

according to the formula below [4]. 

,max ,min ,max ,min( ) ( )1 ; 1ABS ABSFRG FRG BKG BKG
FRG BKG

I I I Iq qRange Range
− −= − = −  

(3) 

where q is the quality metric using absolute intensity values, I is the maximum or 

minimum intensity of foreground (FRG) or background (BKG), and Range is an intensity 

range. 

Due to many fluctuations during microarray slide preparation, one could also 

lessen the requirement on probability distribution uniformity. One might hypothesize that 

regardless of the expected probability distribution function (PDF) of foreground pixels, 

e.g., uniform, Gaussian, Weibull, Beta, Exponential, or Gamma,  the PDF model should 

be consistent for all spots on a microarray slide. This requirement would be referred to as 

distribution model consistency [7]. It is possible to introduce this type of a quality metric 

by estimating PDF model types for all spots and scrutinizing spots that follow a PDF 

model different from the PDF model of the majority of spots. The type of a PDF model 

can be estimated based on a parametric probability distribution plane [26, pp. 29] by 

using higher order central moments (skew and kurtosis) of spot intensities. However, 

these types of quality screening might require better understanding of microarray image 

intensities at macroscopic and microscopic levels. 

Foreground intensity saturation: It has been understood that intensity saturation 

occurs when pixel intensities exceed the detection range of a scanning devise (e.g., a 

photomultiplier tube or an electron detector) and the recorded intensity is truncated. As a 
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result of saturation, estimations of gene expressions are biased [28]. Although, it is not 

clear how to discriminate saturated pixels of highly expressed genes from saturated pixels 

due to contaminants, one could apply the saturation metrics first to both types of 

saturated pixels, then apply spot shape metrics and iteratively refine the results. 

In order to detect saturation, continuous or categorical metrics have been 

proposed. A continuous metric computes the ratio of a number of saturated and 

foreground pixels as defined below [4].  

1CONT saturated
SATURATION

all

countq count= −  

(4) 

A categorical metric assigns a value denoting valid or invalid spot based on a thresholded 

count of saturated pixels. The formula is provided in Equation (5) below. For example, 

according to [75], if a spot contains less than T=10% of saturated pixels then it is a valid 

spot under the assumption that a sample mean or median values are extracted. The 

median value is less affected by saturation since, theoretically, as long as the count of 

saturated pixels is less than 50%, the median value will not change. 

1; %

0; %

saturated
CATEG
SATURATION

saturated

if count T

if count T
q

≥

<
=  

(5) 

Signal-to-noise ratio: The most commonly explored spot property is a signal-to-

noise ratio (SNR). The SNR criterion eliminates spots with very weak signal (1<SNR< 

thresh), no signal (SNR~1), or ghost spots (SNR<1). It is based on intensity information and 

defined either with sample mean and median values according to the formula below. 
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/( ); /( )MEAN MEDIAN
SNR FRG FRG BKG SNR FRG FRG BKGq q m m mµ µ µ= + = +  

(6) 

8.2 Criteria for Assessing Morphological Properties of Foreground  

Spot shape: There are multiple metrics for assessing spot shape and we provide a 

few examples. The underlying assumptions in spot shape metrics are that a valid spot 

should have (a) all pixels inside of a circular region labeled as foreground (consistency of 

spot area), (b) the perimeter of pixels labeled as foreground equal to the expected 

circumference of a spot (consistency of spot perimeter), and (c) the cross sections through 

the centroid of all pixels labeled as foreground equal to the expected diameter of a spot 

(consistency of spot diameter). 

First, the area-based spot shape quality metrics can be computed according to the 

following formulas (see [29, Chapter 3], [75]):  

 

0 01 2

0 0

; exp( )AREA AREA
SHAPE SHAPE

A A A A
q q

A A
− −

= = −  

 (7) 

where A is the area of the pixels labeled as foreground, and A0 is the expected spot area. 

This metric can be modified to reflect the percentage of ignored pixels [46, Chapter 6] 

according to the formula below. 

03 *100%AREA
SHAPE

A A
q

A
−

=  

(8) 
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Second, the perimeter-based spot shape quality metrics would be computed 

according to the previous formulas, where A, and A0 would be replaced with the 

perimeter of the area labeled as foreground and the circumference of a spot. However, for 

small spots the perimeter estimate is very inaccurate due to the nature of digital images. 

Thus, this metric is modified to a ratio of the estimated A and the expected circumference 

C of a spot according to the formula below (see [4]). 

2
4PERIM

SHAPE
Aq C

π=  

(9) 

Another perimeter-based spot quality metric can be defined if a foreground region is 

constrained by a grid cell boundary [46, Chapter 3]. In this case, the metric is defined as a 

ratio of open perimeter and total foreground region perimeter, where the open perimeter 

is the coinciding length of the foreground region with the grid cell boundary. This metric 

might detect spills or any spot-to-spot bleeding. 

Third, the diameter-based spot shape quality metrics assess spot deviation from the 

expected circular shape either by estimating a diameter from an area [7] or by measuring the 

cross section lengths through the spot centroid in multiple angular directions. If the estimated 

diameter or the cross section length deviates from the expected value by more than a user 

specified percentage then the spot is invalid. The quality metrics are defined below. 

0 01 2

0 0

; exp( )X SECTION X SECTION
SHAPE SHAPE

L L L L
q q

L L
− −− −

= = −  

(10) 
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where L is the cross section length of the pixels labeled as foreground, and L0 is the 

expected length.  

In the above metrics, we have included only the spatial spot information. It is 

possible to incorporate spatial and intensity information into a quality metric by asserting 

a model of an expected spot intensity profile. For instance, one could assume that the 

spatial distribution of spot intensities would follow a Uniform model or a Gaussian model 

[14], [69]. Thus, a quality metric would be computed by (a) fitting the model to the spot 

foreground intensities [14] or estimating Gaussian model parameters [69], and (b) 

evaluating the deviation from the model. Unfortunately, the underlying assumption about 

spatial distributions of spot intensities has not been proven to be justifiable since the pixel 

level intensities are not yet understood well.  

Spot location (spot displacement or position offset): The spot location metric is 

defined as the Euclidean distance between a centroid of all pixels labeled as foreground 

and the expected spot center.  The tacit assumption in this case is that the grid alignment 

algorithm is very accurate and hence one can consider the center of each grid cell to be 

the expected spot center (or the ground truth value for quality assessment). In general, the 

metric reflects our beliefs that a detected spot closer to the expected position is more 

trustworthy than a spot far away.  

8.3 Applying Spot Quality Criteria  

After defining multiple quality assessment metrics, one would like to combine a set of 

metrics and flag invalid spots. In order to combine multiple metrics, each metric has to be 

normalized (or weighted) depending on the range of its values. For instance, all metrics 

could be normalized to span the range of values between 0 and 1. Next, a composite 



 52

quality score can be formed by applying operators to a selected set of metrics. The most 

frequent operator is multiplication for continuous metrics, and Boolean AND operator for 

categorical metrics, as shown in Equation (11). The logic behind choosing these operators 

is the fact that one would like to impose all quality criteria simultaneously during spot 

quality assessment. However, a special treatment is usually given to incorporating 

saturation metrics [28], [75]. 

1 1

;
mm

CONT CATEG
COMPOSITE i COMPOSITE i

i i

q q q q
= =

= =∏ I  

(11) 

Another spot quality application issue arises when spot quality assessments are 

performed on multiple image channels.  In general, each channel can be evaluated 

separately, and the final decision about validity of each spot can be reached by a voting 

mechanism (i.e., if the majority channel specific evaluations leads to an invalid label then 

the spot is flagged as invalid). It is also possible to create composite spot quality scores 

by combining quality metrics for all channels and all criteria.  

The challenges in applying spot quality metrics is in choosing (a) the most 

appropriate screening criteria, (b) meaningful threshold values, (c) operators for 

combining several screening criteria and (d) a mechanism for evaluating multiple image 

channels. There is still a need to define standard sets of image-based spot quality criteria 

and introduce them into commercial software packages. Some of the commercial 

software packages, for example, GenePix and QuantArray, have already incorporated the 

most common quality assurance metrics as they are summarized in Table 1. 
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Table 1: Spot screening criteria used in GenePix and QuantArray software packages. µ is 

a sample mean, m is a median, σ is a standard deviation, A is an area of a convex hull, k  

is a multiplier, I is an image intensity, Range is an intensity range and count is a pixel 

count. 

Inspection Criterion Description 

SNR for each channel /( ); /( )FRG FRG BKG FRG FRG BKGm m mµ µ µ+ +  

Foreground and background 

variability 

* / ; * /FRG FRG FRG BKG BKG BKGk kµ σ µ σ  

Excessively high 

background 

/( ); /( )GLOBAL GLOBAL GLOBAL GLOBAL
BKG BKG BKG BKG BKG BKGm m mµ µ µ+ +  

Saturation 1 saturated

all

count
count−  

Proportion of foreground 

above µ+k*σ of background 

*
*; 1k

FRG BKG BKG k
all

count if k then countcount
σ

σµ µ σ>
>> + +  

Spot Shape 
2

4 A
Perim

π  

Foreground and background 

uniformity 

,max ,min ,max ,min( ) ( )1 ;1FRG FRG BKG BKGI I I I
Range Range

− −− −
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Figure 24: Examples of spot quality screening. The input two-channel microarray image with 

an overlaid unevenly spaced grid (left).  The results of screening with the SNR criterion 

(middle), and with the spot location and diameter criteria after Mann-Whitney foreground 

separation using hyperplane (Euclidean distance) thresholding (right). The grid alignment, 

foreground separation and screening results were obtained using I2K software package [7]. 

 

9 DATA QUANTIFICATION AND NORMALIZATION 

 

Given a set of valid spots and two sets of image pixels labeled as foreground and 

background in each spot, there is a need to extract descriptors of each valid spot for 

further gene regulation evaluation. Data quantification (or spot feature extraction) refers 

to extracting descriptive values of foreground and background pixels for each spot. 

Ideally, extracted descriptors (also called features or attributes) should be directly 

proportional to the mRNA quantity in the solution that was deposited in a spot, and 

should represent the deposited gene expression level. However, fluorescent intensity 

measurements in each channel might be scaled or distorted differently according to some 

linear or non-linear functions during data preparation steps. Thus, normalization of 

extracted spot descriptors is desirable. 

9.1 Quantification or Extraction of Spot Descriptors 

In general, we could divide spot descriptors into two categories, such as (1) 

absolute and relative descriptors, and (2) statistical and deterministic descriptors. 

However, before presenting particular candidates for spot descriptors, it is important to 

understand the microarray experimental design in terms of gene expression outcomes. As 
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mentioned in Section 3.1, raw microarray intensities cannot be interpreted as absolute 

measurements due to random and systematic variability in microarray image data 

preparation. Thus, in cDNA gene expression experiments, one is interested in the 

statistical difference in gene expression levels between the probe and target (also referred 

to as test and reference, and denoting the mRNA mixture hybridized to the array and the 

library on the array).  Based on these considerations, we will focus on relative statistical 

descriptors. 

Spot Descriptors: Relative descriptors of cDNA spots are computed as ratios, 

logarithmic ratios or regression ratios of values derived from red and green channels [28]. 

The values can be raw intensities or some absolute descriptors of raw intensities. 

Statistical descriptors characterize sets of pixel intensities that are viewed as realizations 

of a random process following a certain probability distribution. The most common 

statistical descriptors of the two sets of foreground and background image pixels are their 

sample means, medians and modes. These descriptors are defined in every statistical 

textbook [67]. Other statistical descriptors have been proposed, for example, the volume 

of foreground intensity as defined in Equation (12) (see [46, Chapter 6]).  

( )*FRG BKG FRGFRG Volume Aµ µ= −  

(12)  

where µ is the sample mean, and A is the foreground area. Examples of the forms of 

microarray spot descriptors using ratio or logarithmic ratio are provided below. 

CHANNEL 0

CHANNEL1
X FRG
RATIO

FRG

Xdes
X

=  

(13)  
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CHANNEL 0 CHANNEL 0

2 CHANNEL1 CHANNEL1logX WRT BKG FRG BKG
LOG RATIO

FRG BKG

X Xdes
X X

 −
=  − 

 

(14) 

where X is the symbol for sample mean or median or mode, the subscripts FRG and BKG 

refer to foreground and background, and the superscript CHANNEL refers to red or green 

microarray laser scans. While Equation (13) represents a direct ratio of absolute values, 

Equation (14) is a logarithmic ratio of relative differences (X WRT BKG stands for X 

with respect to background). The motivation for using relative differences is to reduce the 

effect of non-specific fluorescence (e.g., auto-fluorescence of glass slides). In Equation 

(14), one has to take special care of the cases when foreground intensities are smaller 

than background intensities in one of the channels (so called ghost spots with reverse spot 

contrast polarity). Additional statistical parameters, such as standard deviation, skew or 

kurtosis, can be extracted to measure an intensity distribution shape (spread, skew and 

symmetry) with higher order central moments. Statistically speaking, these statistical 

parameters indicate the confidence intervals of extracted descriptors. For instance, high 

standard deviation means large variation of computed sample means across multiple 

spots, and hence our confidence in obtaining the exact descriptor over and over is low 

(high uncertainty of absolute values for repeated experiments).   

The regression ratios are quite often used as part of red and green channel 

normalization [59]. In this case, the goal is to extract descriptors that adjust for (a) the 

different efficiency of red and green fluorescent labels when being scanned (red dyes 

have higher efficiency than green dyes), and (b) the different quantities of initial mRNA 

from the two samples. The underlying assumption for computing regression ratios is that 

pixel intensities in red and green channels are linearly dependent. A regression ratio is the 
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estimate of this linear relationship and is based on correlation analysis. The regression 

ratio is computed by fitting a zero-intersecting straight line to a scatter plot formed from 

red and green intensities of foreground and background pixels. If the regression ratio k is 

used for adjusting the fitted line Y=k*X to Y’=X’ then this type of analysis is also 

denoted as linear calibration of red and green channels. The calibration mechanism is 

illustrated in Figure 25.  

 

Figure 25: Illustration of red and green channel calibration. 

Visualization of Spot Descriptors: This problem has been neglected in the past 

and might not have been an issue when the number of spots was low. The most typical 

way of visualizing spot descriptors is to open a spread sheet, and visually inspect spots 

and their descriptors represented in a tabular form. Nevertheless, as the number of spots 

is increasing, the tabular form with thousands of rows does not provide very efficient 

visual inspection mechanism.  

Given the fact that microarray spot layouts are on a regular 2D grid, it seems very 

natural to present extracted spot descriptors in the same grid-based form as the original 

grid-based layout of spots. This visualization approach preserves the relative spatial 

locations of spots. Furthermore, every descriptor value from a set of possible descriptors 
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can be visually inspected by sweeping through a stack of “spot descriptor” images (or 

feature images). An example of this type of visualization is shown in Figure 26.  

    

Figure 26:  An example of extraction of spot descriptors and their visualization using I2K [7]. 

Original grid (left), derived feature images of sample mean (second left), standard deviation 

(second right) and skew (right). 

The long term goal of visualization is to combine gene expression descriptors 

with additional information about genes. For example, the ultimate goal could be to show 

microarray gene expression information with 3D structure of nucleic acid sequences at 

multiple scales, such as macroscopic (populations), microscopic (chromosomal 

locations), sub-microscopic (pharmacological pathways), sub-microscopic/atomic (DNA 

sequences), and atomic (protein  structure) [1]. 

Selection of Spot Descriptors: Naturally, one would like to select the most 

appropriate spot descriptors for further microarray data analysis. It is apparent that 

absolute deterministic descriptors, like sum of intensities, would be spot size dependent, 

and contamination and saturation sensitive. Similarly, absolute descriptors would be 

inappropriate for cDNA microarray spots since the fluorescent intensity measurements 

depend on the reference label. Given the aforementioned relative statistical spot 

descriptors, the pros and cons of each descriptor can be described as follows.  
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The use of sample mean descriptors reduces spot intensity variation but it is 

sensitive to intensity outliers. In contrary, the use of median descriptors is more resistant 

to outliers but it is also more computationally expensive. The median of a foreground or 

background set of size N is determined by rank ordering all intensities according to their 

values and selecting the middle value if N is odd or the average of middle two values if N 

is even [26]. Clearly, the median computation is more computationally complex than 

averaging all pixel intensities. The mode descriptor (or the “most-likely” intensity) is 

measured as the most often occurring intensity in a set of foreground or background 

intensities. It is resistant to outliers and inexpensive to compute, but it might be difficult 

to estimate reliably when the frequency of intensity occurrences (intensity histogram) 

contains multiple peaks (multi-modal intensity distribution). When the intensity 

distribution is uni-modal and symmetric then mean, median and mode estimates are 

equal. 

In terms of the selection of operators for computing relative descriptors, one could 

view the problem from statistical modeling and correlation analysis view points. From a 

statistical modeling view point, it is preferable to use operators (transformations) that 

lead to a random variable following a Gaussian distribution because of the ease of 

mathematical manipulations using the Gaussian distribution model. Previous studies of 

microarray spot intensity distributions have shown that pixel intensity values separated 

by one or two other pixels can be considered as independent draws from a Log-normal or 

Gamma distributions [77]. Thus, using a Gaussian distribution model for logarithmically 

transformed raw intensities would be appropriate. Nonetheless, the distribution of raw 
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intensities should be verified for particular microarray data since data sets and microarray 

technologies vary a lot. 

From a correlation analysis view point, we assume that pixel intensities in red and 

green channels are linearly dependent and a regression ratio is the estimate of this linear 

relationship. Unfortunately, the relationship between channels might not be linear. For 

example, it has been shown that the deviation from the expected linear dependency 

increases with the increasing intensity values and it has a large spread for low intensity 

values [60]. Thus, regression ratio is an appropriate descriptor for microarray images with 

high intensity contrast between foreground and background.  

Improving Robustness of Spot Descriptors: One should also mention other 

techniques that improve robustness of statistical descriptors. For example, it is quite 

frequent to introduce trimming of intensity outliers based on histograms followed by the 

computation of statistical descriptors. The trimming percentages for high and low 

intensity values are set by a user and vary according to data. Another improvement can be 

achieved by combining trimming of intensity outliers and spatial outliers defined by a 

spot spatial template. The spatial trimming eliminates contamination pixels and 

“bleeding” parts of a spot but introduces all problems associated with template-based 

foreground separation.    

9.2 Normalization 

Data quantization and normalization steps are closely related and frequently 

interchanged. The motivation for normalizing microarray images and/or extracted 

descriptors comes from the fact that one would like to compare results obtained from 

multiple slides, scanners, or laboratories, and with multiple microarray techniques. The 
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difficulty of performing meaningful comparisons arises from different slide preparations 

(e.g., amounts of mRNA), scanner settings, microarray protocols or labeling specifics. 

The purpose of normalization is to adjust for these variations, primarily for label 

efficiency and hybridization efficiency, so that we can discover true biological variations 

as defined by the microarray experimental studies. In general, the approaches to 

normalization can be divided to (1) methods using statistical descriptors, (2) techniques 

using control spots, and (3) correlation (regression) analyses.  

Normalization using statistical descriptors: Statistical descriptors include 

sample mean, median, mode or percentile of intensity distribution. This particular 

normalization can be performed by either division or subtraction of statistical descriptors. 

For example, one could apply Z-transformation to this problem that consists of 

subtracting sample mean from all intensities and dividing their values by the standard 

deviation (see Equation (15)). The Z-transformation would normalize intensities but 

would not compensate for labeling non-linearity.  

( , )( , )NORM STAT
Z TRANSFORM

I row colI row col µ
σ−

−
=  

(15)  

where µ is the mean and σ is the standard deviation of an entire image.  

Another example for cDNA microarray data normalization would be background 

correction. Equation (14) shows a specific way of normalizing each spot based its local 

background statistics. The same type of normalization could be performed for each sub-

grid or any group of spots.  
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Normalization using control spots: This technique requires inserting spots of 

known intensities or genes of known expression level into a microarray slide. By 

detecting control spots, one can normalize all other spots with respect to the reference 

intensities defined by the control spots. In this case, it is recommended to scatter the 

control spots across an entire slide so that local variations can be normalized accurately. 

Normalization using regression analyses: As it was mentioned before, 

regression ratios are quite often used as part of red and green channel normalization [59]. 

The normalization methods for two-channel arrays can be characterized as (1) within-

slide normalization (location or scale), (2) paired-slide normalization (dye-swap), and (3) 

multiple slide normalization [80]. The within-slide normalization can be divided into (a) 

location global normalization (log(red/green) – normalization factor), (b) location 

intensity dependent normalization (log(red/green) – normalization factor as a function of 

spot intensity), (c) location within-print-tip-group normalization (log(red/green) – grid 

dependent normalization factor as a function of spot intensity) and (d) scale 

normalization (modeling spread of various print-tip groups). The most commonly used 

normalization technique is the location global normalization [80], assuming zero-offset 

linear dependency between red and green channels (red=k*green). The normalization 

factor c of the model (log(red/green) – c) is computed as c=log(k) so that the normalized 

log-ratios have zero mean or median.  

Many researchers have performed studies about normalization strategies and their 

significance, and showed the importance of normalization. For instance, based on the 

normalization experiments with multiple Arabidopsis thaliana clones reported in [70], the 

average pin-wise strategy was recommended. The pin-wise strategy was defined as a 
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slide-wise normalization of the diluted and constant signals, followed by averaging of the 

dilution and control signals over several slides, and then computing regression ratios. 

Another strategy is to pre-filter microarray images or descriptors before normalization in 

order to eliminate “meaningless” values, for instance, negative intensity values [46, 

Chapter 7]. The image filters should spatially smooth intensities over a small 

neighborhood of pixels, e.g., by using convolution, rank or adaptive filters [61]. It is also 

common practice to pre-filter descriptors by using the median of background plus three 

times Median Absolute Deviation (MAD) of the control genes as a threshold value.  

 One should also be aware that the regression analysis can be applied under 

different red and green channel dependency models. While the majority of analyses 

assume linear dependency, it is also possible to assume non-linear models, such as piece-

wise linear, polynomial or curve dependency models [29, Chapter 12]. Approaches to 

model non-linear red and green channel dependencies are based on (1) introducing higher 

order models (e.g., locally weighted polynomial regression (LOWESS or LOES) [29, 

Chapter 12], exponential model [63]), (2) dividing an intensity range into segments where 

linearity can be assumed (piece-wise linear model), or (3) combining the two previous 

strategies.  

When it comes to using non-linear normalization models, one has to be aware of the 

trade-offs related to modeling generality, continuity and accuracy. For example, if the 

exponential model has been observed in experimental data [63], then it is preferred since 

it contains fewer parameters than a multi-parameter polynomial regression model. 

However, the polynomial regression model might be more accurate on average for a large 

collection of microarray data sets. Similarly, piece-wise models will achieve better 
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accuracy than models using only one-model for the entire range of values. However, a 

piece-wise linear model will introduce rate discontinuity artifacts for intensity differences 

(e.g., two equal pairs of intensity differences might become radically different when 

normalized by different piece-wise linear models). 

 

10 Processing Affymetrix Microarray Data 

 

So far we have focused primarily on cDNA microarray technology since the Affymetrix 

technology based on oligonucleotide arrays is proprietary [2]. Many of the concepts and 

approaches described in the previous sections are applicable to Affymetrix images. 

Nonetheless, the Affymetrix technology is different in the following three aspects. First, 

cDNA arrays are appropriate for detecting long DNA sequences while oligonucleotide 

arrays are designed for detecting only a short DNA sequence. In order to detect long 

sequences with Affymetrix technology, one has to detect multiple short sequences first 

and then combine the values to compare the results with cDNA results. Second, 

oligonucleotide arrays contain only foreground and therefore the extracted descriptors 

represent absolute gene expression level. Third, the Affymetrix technology has been 

much more expensive than the technology with coated glass slides. 

From an image processing view point, the Affymetrix chips are easier to process 

since there is no background and the spot shape is rectangular. Figure 27 shows an 

example image of an Affymetrix chip that is processed by proprietary software to extract 

all statistical intensity information. Nevertheless, the images might also contain 

detrimental defects as shown in Figure 28. 
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Figure 27: An example of Affymetrix chip with rectangular spots. 

 

Figure 28: An example of Affymetrix chip contamination.  

Due to the lack of information about Affymetrix image processing, we will focus 

only on the problem of comparing cDNA and Affymmetrix descriptors. For Affymetrix 

data, several software methods are available to generate ratios and perform data 

normalization. For example, one method is based on the average difference (AD) 

between Perfect Match (PM) and Mis-Match (MM) probe pairs since the Affymetrix 

arrays represent a gene using 20 match and mismatch probes with 25 nucleotides per 

probe. Another method is based on the model-based expression indexes developed by Li 

and Wong [51] and their normalization using invariant sets. In this case, the goal is 

equalize distributions of probe intensities for all arrays in a set of arrays using level 

quantile normalization [17]. 
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The increasing number of platforms for microarray analysis raises the question of 

which platform is most repeatable and which most accurately represents the true 

biological phenomena being tested. The amount of variation or agreement in results 

across platforms is a major issue today. Many studies comparing identical samples across 

platforms have presented contradictory results and repeatability or precision has not 

necessarily proven to be the major factor in gaining accurate biological predictions [78]. 

Both normalized cDNA and Affymetrix expression ratios may have skewed variances 

that are dependant on signal intensity. The common log transformations used for data 

normalization may often increase this differential variation. Variance stabilizing 

transformations have been presented for both Affymetrix [32] and for two color arrays 

[33]. Controlling the variance across platforms may allow for more accurate cross 

platform comparisons. Clearly a better understanding of the methods used for image 

acquisition and analysis is one of the critical factors in reducing variation across 

platforms and will contribute to informed decisions on technology preferences. 

 

11 SUMMARY  

 

Microarray image processing is a basic component of learning about gene 

expression. We have overviewed several processing steps and researchers will have to 

address a few additional challenging issues in extracting reliable information about 

microarray experiments. One of the future challenges of image processing will be the 

optimization of data extraction and the fine play between over saturation of an image and 

signals below detection level. A series of questions arises in this context. How can we 
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increase the dynamic range? Can we use partially saturated spots? In other words, can we 

extract data only from pixels that have not reached saturation, in order to get useful data 

when median signal may be too high? Shall we reject low quality spot data or attempt to 

extract whatever useful data can be saved? Can individual spots that are saturated be 

flagged and rescanned at lower PMT values in an automated fashion until relevant ratios 

are obtained? Can we construct composite images from different scanning intensities to 

maximize the number of spots that (a) fall into detectable ranges with good ratios and (b) 

are not biased by pixels that are too high or too low in intensity? Can a low powered pre-

scan be done first, as is done today, and then instead of a global scan at set levels, adjust 

the PMT on a local basis to adjust for spots that are saturated? 

 Other challenges are related to microarray image storage and archival, 

standardization, automation and fully automated high-throughput processing 

requirements. There is also a lack of understanding of microarray images at pixel level 

and uncertainty propagation. The integration of gene expression information with other 

biological measurements and prior knowledge is also an open area of research. The above 

questions and challenges have to be answered by additional research and development.  
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