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Abstract 
 
The proposed goal of this project is to generate metadata information from motion 
imagery and other supplemental data for content retrieval. In this effort, we address most 
of the following issues that we believe will be critical in generating metadata from 
motion imagery in the near future. The critical issues include (1) developing a unified 
software framework, (2) establishing computational benchmarks for metadata generation, 
(3) exploring methods for computer learning from annotated imagery, (4) building 
probabilistic hierarchical organization of metadata, (5) engaging tools for processing 
heterogeneous multi-modal data sets, (6) generating metadata from compressed imagery 
and (7) defining a standard format for metadata generation. A proposed project of 
Seismic Hazard Mapping illustrates how some of the aforementioned issues could be 
resolved. 
 

1. Introduction 
 

In general, metadata is understood as more comprehensive (more highly organized or 
specialized form) of information obtained from a sensor, for example, motion imagery 
sensor. According to [Ref 7], motion imagery is defined as imaging sensor/ systems that 
generate sequential or continuous streaming images at specified temporal rates (normally 
expressed as frames per second), within a common field of regard beginning at frame rate 
1 frame per second or higher. In this paper, we will focus on metadata generation from 
(a) motion imagery and (b) from any other supplementary data that bolsters our 
confidence in extracted metadata information from imagery. We will consider input data 
to be represented by still images (one frame in a temporal sequence), a temporal sequence 
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of frames (video or images separated by more than one frame per second), hand-
annotated images (a frame with annotations of an image analyst), a set of multi-sensor 
images (electro-optical, synthetic aperture radar, hyperspectral, multi-spectral, infrared, 
laser radar), compressed imagery and other supplementary data (e.g., sensor 
specifications, terrain information, surface geology information, ground observations, 
weather data, intelligence data).  

In terms of application domains for metadata generation, metadata can be used for 
information browsing and retrieval (digital libraries), data compression (lossy or lossless 
communication with a finite bandwidth), reconnaissance (change detection in areas of 
interest), surveillance and monitoring (identification and tracking of entities), or high 
level data mining (e.g., detecting activities or anomalies for intelligence purposes). There 
are several industries that are dealing with digital libraries, document archival, 
telecommunication, data compression, publishing, visual media and audio-visual tools. 
Among all industries, the National Imagery and Mapping Agency (NIMA), defense 
departments, intelligence agencies, law enforcement organizations and the national 
security community have had a growing need for systems that generate metadata from 
imagery and retrieve information based on its content. 

There is a vast amount of literature on many related topics relevant to metadata 
generation from imagery, for example, publications about content-based retrieval from 
video, digital libraries, document analysis, video tracking, multi-sensor fusion and video 
compression. A list of most recent publications can be obtained from (a) conference 
proceedings (e.g., Message Understanding Conference (MUS), Text Retrieval 
Conference (TREC), ACM Special Interest Group on Information Retrieval (SIGIR) 
Conference), and (b) active and past programs and projects (e.g., TIPSTER Text Program 
sponsored by DARPA and NIST; VisualSEEk and VideoQ at Columbia University [Ref 
3]; Informedia Digital Video Library at CMU; LAMP at University of Maryland, Video 
Analysis and Content Extraction (VACE)  by ARDA; National Science, Mathematics, 
Engineering, and Technology Education Digital Library (NSDL) by NSF [Ref 1]; ViPER 
Video Performance Evaluation Resource at NIST; and projects by American Society for 
Information Science (ASIS) ). There are also available documents about video standards 
(e.g., MPEG-7: "Multimedia Content Description Interface" [Ref 4], Motion Imagery 
Standards Profile [Ref 7]) and limited information about commercial products Virage 
(Virage Inc., San Mateo, CA) [Ref 9] and Google (Google Inc., Mountain View, CA).  

In this paper, we will address several issues related to research and development 
of a set of general-purpose and domain-specific analysis tools for generating information 
metadata from imagery. The issues and our motivation to address these issues are 
summarized next. We believe that the following issues will be critical in generating 
metadata from motion imagery in future: (1) unified software framework, (2) 
computational resources for metadata generation, (3) learning from annotated imagery, 
(4) probabilistic hierarchical organization of metadata, (5) processing heterogeneous 
multi-modal data sets, (6) metadata generation from compressed imagery and (7) 
standard formats for metadata representation. Next, we overview the above issues and 
present a proposed project of Seismic Hazard Mapping. The proposed project is 
described to illustrate how some of the aforementioned issues could be resolved. 

 
2. Unified Software Framework 



 
First, it is well understood that indexing motion imagery data collections often 

requires domain-specific code either to extract metadata from complex formats, or to 
extract features from the data itself using analytical codes and represent those features as 
metadata. Specifically, the national security community deals with a variety of imagery 
(multi-sensor imagery and video data), large amounts of data (terra bytes per sensor 
modality) and data with little internal structure (outdoor scenes), which require domain 
specific code to extract metadata. Thus, there is a need for a software framework that 
would enable sharing common metadata extraction algorithms, as well as using domain 
specific extraction methods.  

NCSA Automated Learning Group (ALG) has developed a visual programming 
environment called Data To Knowledge (D2K) [Ref 11] allowing users to easily connect 
software modules together in “itineraries” analogous to the flow of data through an 
analysis process (see Figure 1).  The ALG has been developing a suite of tools for image 
analysis called Image To Knowledge (I2K) inside of the D2K environment, including 
tools for automated and semi-automated processing of data [Ref 12] from agricultural 
engineering, cartography, microscopy, clinical medicine, genomics and life sciences. The 
tool set addresses the problems of camera noise, image calibration, image registration, 
computational reduction [Ref 17], unsupervised classification [Ref 15], [Ref 16], and 
statistical image analysis and synthesis [Ref 14]. In addition, the tools offer basic 
visualization capabilities for two-dimensional multivariate imagery (multi-band imagery), 
motion imagery and for resulting label imagery obtained from classification (see Figure 1 
and I2K documentation [Ref 12]). As part of the visualization, numerical results can be 
visualized using a scatter plot tool or a text area dialog. We continue developing generic 
and domain specific tools that can be shared by users from multiple application domains. 

 

   
Figure 1: D2K visual programming environment (left) and visualization of hyperspectral 
imagery (middle) and results of data mining (right). 

 
3. Computational Resources For Metadata Generation 

 
Computational requirements of motion imagery processing are enormous. For 

example, one color camera would record about 2.6 terra-bytes of data in 24 hours and 
thus any efficient information retrieval requires a succinct representation of the data. It is 
very desirable to experiment and obtain computational benchmarks for processing using 
supercomputers. The need for computational benchmarks comes from the fact that 
metadata generation can be used not only for archival analysis but also for real-time 



screening of high-throughput data streams. Thus, the time and memory requirements 
become critical in selecting appropriate extraction methods.  

The NCSA supercomputing facility will provide the computational resources for 
establishing benchmarks for processing large and small amounts of imagery with 
methods of multiple degrees of computational complexity. The NCSA institution 
maintains a broad array of high-performance computing, storage, and communication 
systems.  The NCSA computing and storage environment consists of four primary 
components: (1) Two teraflop of Linux clusters, integrated by IBM. (2) The Silicon 
Graphics Origin2000 (1,520 processors and 618 GB RAM). (3) NCSA’s Supercluster, 
running both Linux and Microsoft Windows NT. (4) A 250 TB storage archive, powered 
by an eight-processor Origin2000 running UniTreeCFM 2.1.  
 

4. Learning From Image Annotations 
 

Although image annotation has been a part of image analysis, annotations have not 
been used for learning and future automatic and semi-automatic metadata generation. 
When the problem of automatic metadata generation seems very difficult and thus the 
extracted metadata is of little confidence, supervised methods for metadata generations 
are appropriate. A prior knowledge about features in imagery can be learned by 
supervised methods. The knowledge of image analysts can be represented by a set of 
computer generated or hand drawn symbols (see Figure 2) that represent the image 
annotations and are overlaid on the original image. Techniques and tools for automated 
and semi-automated feature extraction and computer-assisted metadata generation from 
annotated imagery can be widely used in all application domains.  

We will develop a generic set of techniques and tools for extracting features from 
a variety of annotated imagery in several application domains. The extracted features will 
be mined for appropriate models with supervised and unsupervised approaches. The 
developed models and the extracted features will provide a hierarchical organization of 
the extracted information that will be converted into metadata.. In the scope of this 
problem, we will address the following three fundamental computational problems 
occurring across multiple application domains: (1) analysis of image annotations (2) 
supervised development of a nonlinear classification model and (3) unsupervised 
evolution of a generative classification model. The details are presented in Section 9. 

   
Figure 2: An example of annotated aerial photography (left) and the contours of the 
annotation to be analyzed (right). 

 
5. Probabilistic Hierarchical Organization of Metadata 



 
In order to perform intelligent and efficient information retrieval, it is desirable to 

create probabilistic hierarchical organization of metadata. The hierarchy of metadata 
reflects the level of details that one might be interest in. For instance, searching for a 
white car or for a moving convoy of vehicles requires analyzing motion imagery at 
multiple levels. The novel aspect of the metadata generation is its probabilistic 
framework. Every extracted feature has its own associated probability of detection. The 
probability will be part of metadata. The probability of feature detection will be 
combined with the probability of a feature matching user’s query match. Thus the 
probabilistic information in metadata will serve during information retrieval to improve 
standard recall and precision measures of any browsing and retrieval system.  

We will extract metadata information at multiple hierarchical levels such as, a 
level of each video frame (entities and their spatial and photometric attributes), a level 
described by a common event (entities and their temporal and spatial changes) and a level 
described by a common theme (a set of spatio-temporal changes of entities and their 
attributes that form a pattern defined by theme or scenario). Extracted information at the 
frame level includes (a) global and local statistics of color, e.g., parametric probability 
distribution functions, (b) textural properties, e.g., co-occurrence features, (c) geometrical 
primitives, e.g., edges, corners and lines, and (d) aggregations of geometrical primitives 
that infer man-made objects, e.g., parallel lines, dashed lines and symmetrical shapes. At 
the event level we focus on the motion of frame features that show persistence over a 
large set of consecutive frames (see Figure 3). The motion information will be derived 
based on an optical flow analysis combined with a correlation-based tracking.  At the 
theme level we use clustering of events and objects to aggregate spatially and temporally 
related video pieces. Furthermore, generated metadata will contain probabilities of its 
entries derived during feature extraction.  
 

  
 



  
Figure 3: Example of analysis at the event level. Top row shows two frames from a video 
sequence with two moving vehicles entering a parking lot. Bottom row shows detected 
vehicles as white blobs (left) and the plot of tracked pixel coordinates of the white pickup 
truck (the vehicle on the right side) as a function of frame index (time). 
 

6. Processing Heterogeneous Multi-Modal Data Sets 
 

In many cases of metadata generation, multiple data sources should be considered 
simultaneously. The commonality of multiple data sources is usually in the information 
content describing the same event in space and time. However, the differences among 
these data sets come from (a) sensor modalities (e.g., infrared, electro-optical, radar, 
multi-spectral, hyperspectral), (b) data resolution (e.g., high-resolution electro-optical 
imagery and low-resolution synthetic aperture radar imagery), (c) arrangement of 
measurements (e.g., regular grid in images and irregular grid of weather measurements), 
(d) acquisition geometry, (e) time of data collection, (f) number of attributes of each 
datum, (g) dynamic range of attribute values,, and so on. In general, processing 
heterogeneous multi-modal data sets requires several pre-processing steps, such as sensor 
distortion correction, calibration, geo-registration, before metadata can be extracted from 
multiple data sources. After pre-processing, each sensor modality should be evaluated for 
its strengths and weaknesses so that the confidence in extracted information from the 
fused data can be established accordingly. 

The NCSA ALG has been developing a suite of tools for the problems of camera 
noise, image calibration, image registration, computational reduction, unsupervised 
classification, and statistical image analysis and synthesis [Ref 12]. These tools have been 
applied to satellite and hyperspectral imagery [Ref 17]. We will continue developing 
algorithms for processing heterogeneous multi-modal data depending on any 
supplementary data available for supporting metadata generation from motion imagery. 
 

7. Metadata Generation From Compressed Imagery 
 

It is apparent that the volume of motion imagery is enormous and thus compression 
algorithms are a necessity. As a consequence, extracting metadata from compressed 
imagery can significantly reduce computational resources (memory and time) for 
metadata generation. The core of current compression standards for still and moving 
imagery is the discrete cosine transform (DCT). DCT is used by JPEG, MPEG, H.261 



and HDTV standards. In general, the algorithms for metadata extraction have to recover 
low level image features from discrete cosine transform coefficients without recovering 
explicit pixel values. Preliminary experiments found in literature [Ref 21], [Ref 22] report 
about 20 times faster edge information recovery and 5 times faster object recognition. 

Although this problem is very important to the metadata generation process, we will 
not explore the methods in a great detail under this project.   

 
8. Metadata Format Standards 

 
Metadata is extracted from a variety of data sources and for a large number of 

applications. Each application defines its own dictionary of desired information to be 
extracted from motion imagery. As of today, applications driven by commercial industry 
have defined industrial standards (e.g., Resource Description Framework (RDF) [Ref 2], 
Extensible Markup Language (XML), Joint Photographic Expert's Group (JPEG-2000) 
[Ref 6], Society of Motion Picture and Television Engineers standards [Ref 8] or Moving 
Picture Experts Group (MPEG-7) [Ref 4] with Description Definition Language (DDL)). 
Applications driven by national security (Department of Defense/Intelligence 
Community/United States Imagery and Geospatial Information Service 
(DoD/IC/USIGS)) have defined government standards (Core Motion Imagery Metadata 
Format, National Imagery Transmission Format (NITF) specified by Motion Imagery 
Standard Board (MISB)). There is a significant overlap in both sets of standards and we 
foresee the format evolution driven by currently used metadata descriptions and by the 
state-of-the-art metadata extraction methods applied in application domains. 

NCSA has been actively participating in development of metadata interoperability 
standards for use with scientific data collections on the Grid [Ref 10]. Under this effort, 
we do not intend to work on metadata standards although we might provide suggestions 
based on the algorithmic work of metadata generation.  
 

9. Experimental Project 
 

We identified a project that would cover some of the aforementioned issues. The 
project, Seismic Hazard Mapping, focuses on metadata generation from hand annotated 
aerial imagery and supplementary data of digital elevations and surface geology. The 
historical data with and without annotations will provide information about temporal 
changes of hazard zones that will be captured by metadata. 

Losses from Earthquake damage have prompted state governments to develop zoning 
legislation based on estimates of seismic hazard risks [Ref 18].  These estimates are 
developed by geotechnical experts on the basis of a variety of historical data, including 
boring logs, ground measurements, digital elevation maps (DEM), and aerial and satellite 
photography.  By integrating all of this data, geotechnical experts produce a variety of 
products, the most significant of which are geo-referenced inventories of hazards such as 
landslides and faults.  As the pace of land development and the availability of new 
sources of digital data increase, it becomes increasingly difficult to manage the 
heterogeneous data required to develop and maintain these inventories.  Furthermore, the 
users of this data are diverse, including engineers, legislators, and insurance companies, 
all of which have different information needs.  Our system will demonstrate that by 



learning from annotated imagery at a few time instances, the extracted metadata from 
incoming imagery can reliably assist in detection of landslide and fault hazards.  

  

Figure 4: Left: aerial photograph of region.  Right: same photograph, annotated to show 
locations and characteristics of landslide hazards. Annotations like these, which are 
currently done manually by hazard mapping agencies, will be used as a training set for 
our machine-learning-based metadata extraction system. (Source: California Department 
of Conservation, Division of Mines and Geology). 

 
To address the detection of landslide and earthquake fault zones, we will focus on 

three technical approaches: (1) analysis of hand-drawn image annotations, (2) supervised 
development of a nonlinear classification model, (3) unsupervised evolution of a 
generative classification model. 

During the course of investigating the three scientific problems, we will develop 
generic tools for fusing photography imagery with digital elevation maps and surface 
geology maps; extracting hand-drawn image annotations and recognizing annotation 
symbols, extracting training data based on annotation symbols; classifying unknown 
heterogeneous data with a supervised classification model using dynamic Bayesian 
networks [Ref 20]; identifying class rarely distinguished humans with an unsupervised 
transformed hidden Markov model [Ref 19]; and generating structured metadata from the 
results of the classification. The proposed tools will be a part of the metadata generation 
of hazard zones according to the flow diagram in Figure 5. The functionality of each 
module/ block in the flow diagram is summarized in Table 1. Table 1 also presents 
scientific issues that will be novel to our research and development.  

 
 



Figure 5: Dataflow for feature-based metadata extraction from heterogeneous scientific 
datasets. 
 

Table 1: Description of the modules in Figure 5.  
 
Processing Module Description of Functionality Scientific Issues 
Data fusion Registration, interpolation Interpolate given a priori 

knowledge (e.g. known plate 
tectonics) 

Sample extraction and annotation 
analysis 

Detection, connectivity analysis, 
skeletonization, feature selection, 
classification into symbols, 
extraction of training samples 
based on symbols 

Characterize symbols, evaluate 
robustness of classification with 
respect to variations of symbols 
in annotations 

Supervised classification Build supervised classification 
model using dynamic Bayesian 
network model, classify un-
annotated data based on the 
model 

Integrate multiple data sources 
and infer complex variable 
dependencies, incorporate feature 
variations (position, scale and 
orientation) into the model, select 
similarity metric 

Unsupervised classification  Build transformed hidden 
Markov model for sub-
classification, sub-classify un-
annotated data based on the 
model 

Incorporate a priori information 
(e.g. DEM and surface geology) 
into the model, integrate multiple 
data sources and incorporate 
feature variations (position, scale 
and orientation) into the model, 
select similarity metric  

Metadata extraction Extract and organize information 
into structured metadata records  

Describe classes and subclasses 
by metadata (e.g., keywords, 
spatial and temporal information, 

Sample 
extraction 

Supervised 
classification

Metadata 
extraction

Annotated 
Input Data 

Index 

Annotated  
Training Samples 

Unsupervised 
sub-classification Input Data 

Without 
Annotation 

Not annotated

Data fusion 
(e.g. photo, 
DEM, etc) 

Class

 



orientation and scale) associated 
with its likelihood values 

 
 
The critical issues of metadata generation will be addressed in the following way. 

First, the software development will be use the Data To Knowledge (D2K) visual 
programming environment and it will be an add-on to the current suite of tools called 
Image To Knowledge (I2K). Second, the NCSA supercomputers will be used for 
benchmarking metadata extraction algorithms to evaluate memory and speed 
requirements of algorithms for a given application. Third, the analysis of hand of hand-
drawn image annotations will be a part of supervised learning of a nonlinear 
classification model and also a part of unsupervised evolution of a generative 
classification model. Fourth, while each image will be described by its color, texture and 
a set of geometrical primitives, a set of historical data sets will be analyzed for its events 
(changes in landslide geometry over time) and themes (co-occurrence of several landslide 
events in space and time). Fifth, heterogeneous data sets (imagery, digital elevation maps 
and surface geology) will be pre-processed in order to maximize the resulting confidence 
in generated metadata. The issues of metadata generation from compressed imagery and 
metadata format standards will not be addressed. 

 
10. Conclusions 

 
We have examined several critical issues of metadata generation including (1) a 

unified software framework, (2) computational resources for metadata generation, (3) 
computer learning from annotated imagery, (4) probabilistic hierarchical organization of 
metadata, (5) processing heterogeneous multi-modal data sets, (6) generating metadata 
from compressed imagery and (7) defining a standard format for metadata generation. 
The proposed project of Seismic Hazard Mapping was described to illustrate how some 
of the aforementioned issues of metadata generation would be resolved in a concrete 
application.  

Our proposed work will be built on our previous work with information extraction, 
and data mining in NCSA’s Data To Knowledge (D2K) effort. D2K software will 
provide a framework of metadata extraction components for handling broad classes of 
motion imagery data objects.  To adapt this framework to particular domains, a “plug-in” 
architecture will be used, minimizing the redundant effort required to integrate new types 
of data into the system. The development of techniques and tools for automated and 
semi-automated feature extraction and computer-assisted metadata generation will be a 
collaborative effort of the NCSA ALG and the Image Formation and Processing Research 
Group (IFP) at the University of Illinois. 

We believe that hand-drawn annotations of the sort produced by geotechnical experts, 
or image analysts in general, are extremely valuable sources of domain knowledge, since 
they correlate particular image regions with expert judgments about what domain features 
those regions represent.  Automatically interpreting hand-drawn annotations is difficult, 
however, because it requires disambiguating individual variations among annotators as 
well as recognizing symbols in all their positional, rotational, scale- and shear-related 
variations. Nonetheless, the tools developed for learning from annotated aerial 
photography can be easily used on motion imagery. 



We also proposed to extract metadata information at multiple hierarchical levels such 
as, a level of each video frame, a level described by a common event and a level 
described by a common theme. This effort lays down the groundwork for probabilistic 
hierarchical metadata organization that will be the final product of metadata generation 
process after all pre-processing, benchmarking, learning, recognition and metadata 
creation stages are completed.   
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