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Abstract--In this work we present a new extraction and 
matching algorithms that enable to perform automatic 
target recognition (ATR) in high-resolution synthetic 
aperture radar (SAR) data and targets in proximity. Our 
motivation was to show benefits of high-resolution SAR for 
ATR and extend the current capabilities of ATR 
algorithms for targets in extended operating conditions 
(EOCs), for example, targets in proximity. We develop a 
new extraction algorithm for target signatures represented 
by a point pattern. Each point pattern is extracted using a 
resolution independent SAR peak model. Test and 
prototype target signatures are compared with a new 
matching algorithm. The matching algorithm is capable of 
identifying multiple signatures in a test point pattern. An 
experimental evaluation of ATR performance for targets 
in proximity at multiple data resolution is conducted. The 
contribution of this work is in (a) developing a peak 
extraction algorithm that uses a resolution independent 
SAR peak model, (b) designing a new matching algorithm 
that can identify multiple signatures in a single test 
pattern, (c) evaluating ATR performance for targets in 
proximity at multiple data resolutions. 
 

I.  INTRODUCTION 

 
The goal of automated target recognition (ATR) is 

to identify targets from measured synthetic aperture 
radar (SAR) imagery [1, 2]. The most common ATR 
system consists of three modules. They are (1) focus of 
attention that filters out all but regions of interest (ROI), 
(2) indexer that labels target candidates and (3) predict-
extract-match-search (PEMS) subsystem that verifies 
target identifications by matching predicted signatures 
in a database with measured signatures.  In this work, 
our primary interest is in the PEMS subsystem, and 
particularly in its extract and match components.  

In the previous work [1, 4], researches have 
evaluated PEMS performance using a probability of 
correct identification (PCI) measure for targets in 
extended operating conditions (EOC). Robustness to 
EOC’s is understood as the ability of PEMS subsystem 
to identify correctly a target that has variations not 
included in the database of predicted signatures. For 
instance, a variation in position, configuration, 
articulation, ground conditions or due to obscuration, 
targets in proximity and revetments. Most of the 

evaluation work has been conducted with multiple 
targets in open with possible articulation and 
configuration variations. There was no PEMS 
performance evaluation of targets in proximity to our 
knowledge. The most common SAR data resolution 
used in the previous evaluations was 12”. 

This work was motivated by the fact that the ATR 
systems in general have problems with targets in 
proximity. In addition, the problems arise when a single 
signature is corrupted by the presence of another target 
in proximity [2]. Furthermore, there was no quantitative 
evaluation of PEMS subsystem as a function of SAR 
data resolution.  Performance studies with respect to 
data resolution are critical for new SAR sensor 
development. The objective of this work is to design 
new extraction and matching algorithms that can cope 
with (a) unknown targets in proximity and (b) multiple 
SAR data resolutions. The secondary objective is in 
evaluating PEMS subsystem performance in EOC’s 
with the new algorithms and at multiple SAR data 
resolutions. 

II.  APPROACH 

 
We approached the problem of multiple data 

resolution with a new feature extraction algorithm. In 
order to extract features at multiple SAR resolutions, a 
new peak model is proposed based on our theoretical 
analysis of canonical geometry (rectangular and circular 
plates). The reason behind extracting peaks particularly 
lies in the electro-magnetic theory of scattering centers 
[11]. In the past, a target signature has been mostly 
modeled with round peaks [4, 8]. The peaks in the 
previous ATR work have been modeled by either 
intensity maxima [4, 5] or Gaussian distribution [8] over 
detected target pixels at 6” and 12” resolutions. 
However, we have observed that the round peak model 
does not hold in high resolution SAR data and the Sinc 
(sin(x)/x) behavior along range axis is much more 
salient in high resolution SAR data than in low 
resolution SAR data, e.g., 12” data. 

According to our theoretical analysis, it is more 
appropriate to model peaks at high resolutions with 
Gaussian distribution along cross-range axis and Sinc 



 

 

 

 

(sin(x)/x) distribution along range axis [15]. We refer to 
this model as a hybrid Gaussian-sinc peak model. This 
model reduces to a Gaussian (or round) peak model in 
lower resolution SAR data. Our assumptions for the 
peak model are that at very high SAR spatial resolution 
(a) target surfaces can be well approximated by a set of 
planar patches and (b) target parts that are not easily 
configurable, and therefore lead to stable features, 
consist of large surface patches similar to a canonical 
geometry dealt with in the standard electro-magnetic 
textbooks [11]. With the new peak model, we can 
estimate and extract peak parameters at any resolution 
and therefore address the problem of PEMS subsystem 
performance at multiple resolutions. A more complex 
target signature model has been proposed by the 
researches at OSU [10], such as, a parametric attributed 
scattering center model. Although the model is more 
accurate than our peak model, we have not used it 
because the target features would have had higher 
dimensionality than a point and thus matching of target 
signatures would become very complex. In future we 
would like to improve the target signature model and 
the matching algorithm such that a set of geometrical 
primitives (e.g., points, lines and regions) would be part 
of the signature model. 

We also approached the problem of targets in 
proximity with a new matching algorithm. The novelty 
of the presented matching algorithm lies in using shape 
information derived from a discrete set of target 
signature points. In contrast with other methods [3, 4] 
this method converts the points into shape information 
denoted as s-shape and uses the s-shape representation 
for computationally efficient and reliable matching. 
Furthermore, the s-shape based matching approach uses 
a connectivity analysis for separating multiple unknown 
target signatures in a test point pattern and thus 
identifies successfully multiple targets in pro ximity.  

 

III.  OVERVIEW OF FEATURE EXTRACTION AND 
MATCHING ALGORITHMS 

 
In the previous work on feature extraction, 

centroid locations of Gaussian (or round) peaks are 
found by (a) analyzing peak model [8], (b) nonlinear 
filtering [8], and (c) applying Delaunay triangulation 
[9]. In order to extract centroid locations of the 
Gaussian-sinc peaks, we use a hybrid filter created from 
a Gaussian filter along cross-range axis and a sombrero 
filter [13] along range axis.  The mathematical 
description of the hybrid filter is in the equation below. 

2

2

2

( )
2 sin( ( ))

( , )
( )2

x x
A r r

f r x
r r

e σ ω

ωπσ

− −
−

=
−

              (1) 

While the values of σ  (Gaussian parameter) and 
ω (Sinc parameter) have to be found, the amplitude 
parameter A can be chosen arbitrarily. The variables r 
and x represent range and cross-range values with 
respect to a fixed spatial location denoted by (r , x ). 
The hybrid filter model is shown in Fig. 1 for several 
combinations of parameters. The filter is applied over 
an image area with target to enhance all peaks. Since the 
filter parameters, such as, the width of the Gaussian 
σ and sinc lobes ω , depend on (a) data resolution and 
(b) the size of a target component; selecting the 
maximum filter response over a range of filter values 
approximates them. The initial filter values are 
estimated from a histogram of sizes of target 
components since the data resolution and the target 
CAD model are available beforehand. The filtered 
image is then binarized by a threshold value, which is 
equal to the mean plus three times standard deviation of 
the distribution. Peak locations are extracted from the 
connected “high intensity” image blobs as the blob 
centroids. 
 
 

 



 

 

 

 

 

 
Fig. 1. Resolution independent model of peak features in SAR data. 
The model represents peak variations in amplitude, size of the main 
lobe (wide peak - middle, narrow peak - bottom) and spacing of the 
side lobes from the main lobe (small spacing – top, large spacing – 

middle and bottom).    

The matching algorithm developed in this 
paper is based on the s-shape representation [6, 7] of a 
set of peak locations called point pattern. An example of 
a point pattern is shown in Fig. 2. The s-shape 
representation is defined as a set of shape parameters 
derived from a point pattern that was overlaid with a 
rectangular grid and converted into compact regions 
containing connected grid cells occupied with at least 
one point (see Fig. 1 and Fig. 3). The set of shape 
parameters is a succinct representation of a target 
signature that provides means for computationally 
efficient and reliable matching. Furthermore, the s-
shape based matching approach uses a connectivity 
analysis for separating multiple unknown target 
signatures in a test signature and thus can identify 
successfully multiple targets in proximity.  

 

  

Fig. 2 Point pattern of Btr70 prototype target signature generated at 
depression angle equal to 30 degrees and azimuth angle equal to 60 

degrees. 

 

  

 

Fig. 3.  The derived binary image  (top) from point pattern shown in 
Fig. 2 and the smoothed version (bottom) of the binary image.  These 
images represent the s-shape matrix and its smoothed version scaled 

by the grid side length. 

 
 

The following steps can summarize our matching 
algorithm. First, the grid size is estimated based on the 



 

 

 

 

density of a point pattern distribution [6, 7]. Second, 
regions are detected by selecting connected grid cells 
that are occupied by at least one point. Third, these 
regions are filtered with a morphological closing in 
order to enhance stable region geometry.  Fourth, the 
best position for matching a prototype target signature 
to an unknown signature is found by minimizing border 
and non-border mismatch measures for the candidate 
prototype. The prototype with minimum mismatch 
measure at its best-fit location is recorded as the best 
match for the test target. However, if the outcome 
provides multiple results, i.e., optimal mismatches are 
attained for multiple prototypes (at the same or different 
locations of the test target) then we use an additional 
measure based on shape parameters of the prototype and 
its matched subregions in the test target (such as grid 
size, number of points, size of bounding rectangles, 
center of mass, and shape number).  Fifth, the subset of 
the test pattern that gave rise to connected regions in the 
second step is removed from the test point pattern. The 
algorithm continues from step one until the number of 
remaining points is above some threshold or the best 
match is below a minimum score.  

 

IV.EXPERIMENTS AND RESULTS 
 

We used two CAD models of Btr70 and Btr80 
targets in our experiments. The signatures of Btr70 and 
Btr80 are similar to each other under optical or SAR 
sensors and therefore they create a challenge for any 
ATR system. All SAR target signatures were generate 
by running Xpatch simulations [14].  The Xpatch 
simulations used decimated 3D CAD models  with 
several viewing and articulation variations shown in 
Fig. 4 and Fig. 5. 
 

 
Fig. 4. An example of a decimated 3D CAD target model in open with 

variations in aspect angle.  

 

 
 
Fig. 5. An example of a decimated 3D CAD target model in open with 
variations in turret articulation.  
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Fig. 6. Results of the experiments with a single target. The chart 

shows probabilities of correct identification (PCI) at multiple 
resolutions (R) while performing ATR under various extended 

operating conditions 

In our first set of experiments we used several 
levels of signature occlusion and distortion. For 
example, in Fig. 6, 50% randomly selected features 
were missing or displaced in a local circular 
neighborhood whose radius is defined as a function of 
the grid-size. The second set of experiments involved 
target proximity related experiments (two targets were 
placed side-by-side at 4, 5 and 6 m or behind each other 
at 8, 9 and 10 m). The proximity scenarios are shown in 
Fig. 7 and Fig. 8. The mutual distance was measured 
from a CAD center of one target to a CAD center of the 
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other target. All these configurations were modeled for 
24 aspect angles from 0 to 360 degrees, with 15-degree 
increments and at 30-degree depression angle and at 2”, 
6” and 12” data resolutions. The prototype database 
always contained two non-articulated targets, Btr70 and 
Btr80. The results of a probability of correct 
identification (PCI) are shown in Fig. 6 (single target) 
and Fig. 9 (targets in proximity). Both figures 
demonstrate importance of high resolution SAR data for 
accurate ATR and the results provide quantitative 
measures of accuracy for each target model and a 
proximity configuration. 

 
 

Fig. 7. Scenario with two targets modeled behind (B) each other. 

 
 
Fig. 8. Scenario with two targets modeled apart (A) from each other. 
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Fig. 9. Results of the experiments with targets in proximity. The chart 

shows the probability of correct identification (PCI) from SAR 
signatures as a function of mutual distance (behind by 10, 9 and 8 m; 

and apart by 6, 5 and 4 m) and data resolution (2”, 6” and 12”). 

 

V. SUMMARY 

 
We have presented a new extraction and matching 

algorithms that enabled automatic target recognition 
(ATR) in high-resolution synthetic aperture radar (SAR) 
data with targets in proximity. Our focus was on 
benefits of high-resolution SAR for ATR in addition to 
the algorithmic development that extended the current 
capabilities of ATR algorithms for targets in close 
proximity. We have developed a new extraction 
algorithm for target signatures represented by a point 
pattern with a resolution independent SAR peak model. 
The obtained target signatures were compared using a 
new matching algorithm that is capable of identifying 
multiple signatures in a test point pattern. We concluded 
based on the experimental evaluation of ATR 
performance for targets in proximity at multiple data 
resolution that the SAR data resolution is critical for a 
satisfactory ATR performance. This research has shown 
a significant ATR performance improvement for targets 
in proximity when the SAR data resolution increased 
from 12” to 6”. The ATR performance improvement 
from 6” to 2” SAR data resolution was less significant 



 

 

 

 

than the improvement recorded from 12” to 6” SAR 
data resolution. However, we believe that the robustness 
of ATR systems in a presence of multiple variables 
included in EOCs might be more sensitive to the choice 
of 2” versus 6” SAR data resolution. This issue remains 
to be explored in our future investigations. 
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