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ABSTRACT 

This paper addresses the problem of automated extraction of 
constant valued elevation curves (isocontours) from 2-
dimensional (2D) images of historical maps. We present a new 
isocontour extraction method that can operate in a semi 
automatic or fully automatic mode. The novelty of the work is 
in developing an isocontour extraction technique for historical 
map analysis that is unique in the GIS application domain and 
applicable in web, object recognition and semiconductor defect 
analysis applications. Three components of the presented 
extraction process are described including contour initialization, 
contour tracing and automatic extraction of all isocontours. An 
experimental comparison of the extraction results obtained 
using semi automatic and fully automatic modes of the 
algorithm is shown.  

Keywords: Image Processing, Map Analysis, Isocontour 
Detection 

1. INTRODUCTION 

The problem presented in this paper is formulated as a computer 
assisted extraction of isocontours from 2D digital images of 
historical maps. The isocontours represent horizontal cross 
sections of 3D terrain at equal elevations [1] and can be 
classified as curvilinear image features [3] in the image feature 
space (see Figure 1, left). The overlay of time varying 
isocontours (see Figure 1, right) provides very valuable piece of 
information for understanding an elevation changes in time, for 
investigating an impact of building damns on local ecology, and 
for preparing any ecological restoration project. The GIS 
application for our work is the project of backwater restoration 
of the Illinois River [2].  

Nonetheless, there are other applications in web information 
processing, computer vision and machine vision domains that 
can directly benefit from an algorithm for automatic extraction 
of curvilinear features. For example, (1) classification of web-
collected images, such as, logos, caricatures or sketches, (2) 
object recognition for collision avoidance tasks and for 
navigation tasks of manipulators and robots in computer vision, 
or (3) defect analysis, such as, scratches on semiconductor 
wafers or chip packages, in machine vision applications. 
Although these applications are not the major drivers of our 
work, they are mentioned to demonstrate the wide applicability 
of the proposed algorithm.  

 

Figure 1: The relative relationship of isocontours and 
curvilinear features (left). An overlay of constant elevation 
curves over time (right). 

The motivation for developing isocontour extraction methods 
from 2D images comes from the lack of currently available 
software tools. None of the commercially available remote 
sensing or GIS software packages, such as, ENVI [8] or ARC 
tools [7], contains a tool for automatic isocontour extraction 
from 2D images. The current solution to the presented problem 
would be a time consuming and laborious hand tracing of 
contours, for example, in Adobe Photoshop [9].  

Other approach to the problem of curvilinear feature extraction 
would be to binarize all scanned maps by thresholding and then 
conduct automatic line following [6, pp. 413-420]. The pitfall of 
this approach is in the fact that (a) isocontours intersect many 
other curvilinear features and map symbols, (b) maps contain 
creases and folds causing isocontour gaps and (c) isocontours 
have varying local contrast and therefore no single threshold 
would provide clean separation of contours from the 
background. We eliminated this approach due to the high cost 
of required post-processing and fine-tuning for each map.  

We propose to approach the problem of isocontour extraction 
by tracing curvilinear features based on local edge information. 
At any intersection of curvilinear features, the straight line with 
the highest contrast score and the smallest angular deviation 
from the contour tangential direction will be followed. While a 
contour initiation is manual in the case of semi automatic 
extraction, the problem of automatic contour initiation and the 
problem of separating isocontours from other curvilinear 
features (also called contours in this paper) are addressed in this 
paper for the case of fully automatic extraction.  

Next, we describe the following issues related to automated 
isocontour extraction from historical maps; (1) finding an initial 
contour point and contour direction in Section 2, (2) tracing 
contours in Section 3 and (3) extracting all isocontours in large 
historical maps automatically in Section 4. The isocontour 
extraction process is illustrated in Figure 2. Section 5 describes 
an experimental comparison of isocontour extraction in semi 
automatic and fully automatic modes. We conclude in Section 
6. 



 Figure 2: The schema of isocontour extraction in two modes.  

2. CONTOUR INITIALIZATION 

Given a small sub-area of an image, initial contour point and 
contour direction have to be found. The sub-area of an image 
can be selected by a mouse click (semi automatic mode) or can 
be determined automatically as it will be described in Section 4 
(fully automatic mode).  

A contour initialization process starts with one-directional 
vertical edge detection defined in Eq. (1). The output of the 
edge detection is a score that corresponds to the normalized 
magnitude of the directional derivative. The row and column 
variables in Eq. (1) are defined with respect to the sub-area 
coordinate system having the origin in the left upper corner of 
the sub-area. The I variable represents image intensity. 

                                                      (1) 

In the second step, the edge detection is repeated after the sub-
area has been incrementally rotated around the left upper corner 
of the sub-area (see Figure 3 and 4). The rotation angle spans 
360 degrees in order to explore a circular image area around the 
left upper corner of the sub-area. The initial contour direction is 
selected along the angular direction with the highest edge score. 
The center of the detected edge with the highest score is the first 
point of an extracted contour. The contour will be traced in both 
directions unless the contour is closed, which is detected 
automatically.  

    

Figure 3: Given an initial point in the image displayed by an 
overlaid circle, the result of contour initialization is shown with 
a rectangle (left). The angular rotation of the rectangle is 
selected by rotating it around the initial point and finding the 
maximum edge score over the range of angles (right).  
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Figure 4: Angular scores from directional edge detection 
computed for the image sub-areas obtained by rotating a 
rectangle around an initial point (circle) shown in Figure 3. 

3. TRACING CONTOURS 

In general, an isocontour extraction algorithm has to be robust 
to (a) within contour class variations (curvature variations, 
contour gaps, edge intensity contrast variation or spatially dense 
isocontours), (b) across class similarities of isocontours with 
other curvilinear features (dashed lines in a river bed, railroad 
lines, latitude and longitude straight lines or edges of a geo-
registered map) and (c) other background clutter conditions 
(touching text or other map symbols, intersecting contours with 
other lines or  map artifacts, such as shading due to creases and 
folds). Some examples are shown in Figure 5 and Figure 6. 

  

Figure 5: Examples of map regions illustrating the robustness 
challenges for an isocontour extraction algorithm. 

  

Figure 6: Examples of (a) large curvature isocontours (left), 
spatially high density of contours (left), edges of a geo-
registered map (right), and dashed lines (right) to be eliminated. 

 



3.1. Curvilinear Feature Extraction Algorithm 

We have researched an algorithm for tracing isocontours in the 
presence of all aforementioned conditions given an initial 
contour point and direction. The underlying approach to tracing 
isocontours is based on a piece-wise linear approximation of 
curvilinear contours. This approach uses only local contour 
information for tracing and therefore it introduces an inherent 
tradeoff between contour curvature and statistical robustness of 
the extraction algorithm with respect to the described isocontour 
variations. The tradeoff comes from the fact that while high-
order contour approximations, e.g., quadratic or qubic 
approximations, give more accurate curvature description, they 
are notoriously known to be very noise sensitive in digital 
imagery.  

Once a local piece-wise linear approximation has been selected, 
one has to choose a robust linear approximation method. In this 
work, we selected a statistical edge detection method used also 
for the contour initialization and described in Section 2. This 
edge detection method has proven to be more robust to most of 
the background conditions than a least square approximation 
method.  

A mathematical model of a contour ( ( ))C v t  is represented by 

a set of vectors v   (linear approximations) that is a function of 
the contour parameter t, where t represents a contour location.  

               (2) 

We have constrained the contour tracing by imposing a 
directional continuity constraint according to Eq. 3. 

                                                              (3) 

For now, we assumed that v  is not a function of sub-area’s 
width or height. 

                                                                         (4) 

The implementation of the directional continuity constraint in a 
discrete image domain takes the form expressed in Eq. (5). 
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 The value threshϕ  was set to 90 degrees for the neighboring 
vectors (n=1) to avoid large directional changes between 
consecutive line segments. If the sub-area size would change 
then the value threshϕ  would be a function of the sub-area 
height. This constraint improves robustness of the method with 
respect to background clutter and intersecting features.  

Figure 7 shows a curvature approximation error due to the 
piece-wise linear model and it also illustrates the robustness of 
the extraction method with respect to background map 
annotation (“Timber and Brush” text). In this case, the sub-area 
size (height and width) is fixed during the tracing.  

   

Figure 7: An illustration of the trade-off between accuracy of 
contour curvature description and robustness with respect to 
background map annotation (left). An example of robustness 
improvement of the tracing method by imposing a directional 
continuity constraint (right).  

3.2. Self-Correcting Capability of Extraction 
Algorithm 

Another aspect of the proposed isocontour extraction algorithm 
is its self-recovery in the case of losing the traced isocontour. 
The reason for losing a traced contour can be a large contour 
gap, intersecting line or a high-contrast background clutter. We 
have identified two ways how to detect that a traced contour 
was lost. First, the maximum edge score over all possible 
directions at a contour location t+n dropped below a minimum 
score value. Second, the sequence of contour vectors (or 
contour tangential lines) changes directions abruptly over a 
small contour segment; for example, the sequence is detecting 
outer edges of a map symbol. 

 It is desirable to recover from the incorrect tracing direction at 
a location t+n and search for other acceptable contour directions 
at a previous contour location t<t+n. Other acceptable contour 
directions can be found at locations [t, t+n] by exploring edge 
distribution inside of a sub-area or by varying the sub-area size. 
In the self-correcting process, we applied the analysis based on 
a variable sub-area size after performing the analysis based on 
edge distribution because enlarging a sub-area height 
significantly reduces the maximum curvature of a traced 
isocontour. Short and high-contrast spurious edges inside of a 
sub-area, for instance, due to background clutter, can mislead 
the local edge detection by undesirable increase of score value, 
while small gaps in isocontours due to map folds and creases 
will significantly decrease score values (see Figure 8). To deal 
with both issues, we analyzed the score distribution as a 
function of a sub-area rotation angle and as a function of 
horizontal sub-area strips. If the score distribution over the 
range of rotation angles is multi-modal then the analysis of 
horizontal sub-area strips will reveal edge discontinuities based 
on the score values and edge locations. The mechanism for 
forming edge distributions (score and location) from horizontal 
sub-area strips is shown in Figure 9.  



   

Figure 8: Examples of contour gaps and parallel lines in 
proximity (left), dashed line (middle) and touching symbol 
(right) delineated with a rectangular. 

 

Figure 9:  The mechanism for forming edge distributions, such 
as score and location (column) as a function of a sub-area strip 
(row). 

In order to correct traced directions, we studied edge 
distributions by considering all edge scenarios inside of a sub-
area. There are four basic scenarios of multiple contour 
segments (and their linear approximations) inside of a sub-area 
that we studied in detail; (1) co-linear segments, (2) parallel 
segments, (3) misaligned disconnected segments and (4) 
misaligned but intersecting segments. The scenarios with a 
single solid contour segment and no contour segment (or no 
intensity contrast) are clearly distinguishable and do not create 
confusion during isocontour extraction. All scenarios are 
illustrated in Figure 10. The analysis can be summarized in 
Table 1. It focuses on the number of peaks in the score 
distribution as a function of a sub-area rotational angle (called 
angular distribution) and the description of score and location 
dependency as a function of horizontal sub-area strips (called 
edge distribution). Table 1 does not contain the case of parallel 
co-linear segments because we have not found such a case in a 
dataset of historical maps. 

 

Figure 10: All possible scenarios of contour segments in a sub-
area under investigation. 

Table 1: The summary of distribution analysis  

Scenario Number of 
Peaks in 
Angular 
Distribution 

Edge Distribution 

 Distribution Description 
of Score 
Distribution 

Description 
of Location 
Distributio
n  

Co-linear 
segments 

1 Piece-Wise 
Constant 

Constant 

Parallel solid 
segments 

1 Constant Piece-Wise 
Constant 

Misaligned 
disconnected 
segments 

>1 Partially 
Constant 

Partially 
Constant 

Misaligned 
intersecting 
segments 

>1 Partially 
Constant 

Constant 

Single 
segment 

1 Constant Constant 

No 
discontinuity 

0 N/A N/A 

To visualize score and location characteristics in the edge 
distribution, we selected examples of a single contour segment 
(see graphs in Figure 4 and Figure 11), co-linear segments (see 
image in Figure 8, middle, and corresponding graphs in Figure 
12) and misaligned disconnected segments (see image in Figure 
8, right, and corresponding graphs in Figure 13) and plotted the 
measured characteristics. The plots in Figure 11-13 support the 
entries in Table 1. 
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Figure 11: Edge Location and score distributions for a solid 
contour segment with the corresponding angular scores in 
Figure 4. 
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Figure 12: Angular score (top) and edge location with score 
(bottom) characteristics of a dashed line shown in Figure 8 
(middle). 
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Figure 13: Angular score (top) and edge location with score 
(bottom) characteristics of a sub-area with touching symbol 
shown in Figure 8 (right). 

Exploring angular and edge distributions enabled correcting a 
contour direction for the cases of co-linear segments (follow the 
co-linear direction and overcome the gap), parallel segments 
(match the direction o the previous segment) and misaligned 
disconnected segments (move to the end point of the closest 
discontinuity and search again). Other cases, for instance, large 
gaps or two intersecting lines with a small directional 
discrepancy, are treated by doubling the height extend of the 
sub-area and re-running the analysis.   

4. AUTOMATIC EXTRACTION OF ALL 
ISOCONTOURS 

It is assumed that in a semi automatic mode all initial sub-areas 
(or contour points) are valid and contain a contour segment. 
Furthermore, in contrast to fully automatic extraction, an 
extracted contour in semi automatic mode can be evaluated by a 
user and added or rejected from a set of already found 
isocontours. However, while the semi automatic mode is 

suitable for extracting a few isocontours of interest, a fully 
automatic mode for extraction is needed when several large 
historical maps with thousands of isocontours must be 
processed. Besides the large number of isocontours to be 
extracted, there are also other issues that motivated our 
development of fully automatic extraction, such as, a map size 
(it is possible to view only a sub-sampled image) and a fusion 
issue of several extracted contours from multiple geographically 
overlapping maps. 

An automatic extraction of all isocontours poses challenges on 
(1) finding all initial contour points (sub-areas of image with 
contour segments), (2) avoiding extractions of duplicate 
contours, and (3) discriminating isocontours from other 
curvilinear features. The developed method resolves the first 
problem by partitioning an image into a set of small sub-areas 
and analyzing the distribution of high contrast edges. High-pass 
filtering of a sub-area and thresholding it by the sample mean 
plus standard deviation of the filtered sub-area detects high-
contrast edges. Thus, the thresholded image contains “high-
contrast” edges defined according to Eq. (6), where FT stands 
for Fourier Transform. 
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A spatial distribution of high-contrast edges is evaluated by 
computing central moments and selecting those sub-areas of an 
image that contain highly elongated spatial distribution of high-
contrast edges. This type of analysis is less computationally 
intensive than one-dimensional edge detection with an angular 
sweep of 180 (or 360) degrees. An example of a set of contour 
initial points that were automatically found is shown in Figure 
14. 

 

Figure 14: The result of global multi-contour initialization. 
Crosses denote locations of automatically found initial contour 
points.  

The second problem related to avoiding duplicate contours is 
addressed by eliminating any sub-area from the set of initial 
sub-areas that contains a point from already found contours. To 
minimize required computation for elimination, the maximum 
number of initial points can be set by a user and initial contour 



points are searched uniformly over the entire image. It is 
apparent that one should choose the maximum number of initial 
points larger than the number of existing contours. 

The last problem of discriminating isocontours from other 
curvilinear features requires (a) identification of unique 
isocontour features and (b) discrimination and classification of 
isocontours using the methods described in [3], [4]. This work is 
still in progress and is not discussed in this paper. 

5. EXPERIMENTAL RESULTS 

The presented algorithm has been tested in both semi automatic 
and fully automatic modes. We have developed a user-friendly 
interface [5] that allows extraction of isocontours one by one 
with a mouse click initialization or automatically without any 
human intervention. The results of isocontour extraction are 
added to a repository of results that can be viewed and saved. 
Individual isocontours can be color coded manually according 
to their elevation value. Example results are presented in Figure 
15 and Figure 16.  

A thorough performance robustness analysis will be conducted 
in future with synthetic data. Synthetic data will be used to 
demonstrate the extraction robustness with respect to (a) 
contour curvature, (b) contour contrast variations and (c) the 
edge scenarios described in Figure 10. 

   

Figure 15: An example of a closed contour extraction. Original 
image (left), extracted contour (middle) and the interface 
demonstrate the input, output and control of the extraction 
process.  

  

Figure 16: A comparison of the results obtained from the 
algorithm running in a semi-automatic (middle) or fully 
automatic (right) extraction mode on a map sub-area (left). 

6. SUMMARY 

In this paper we have presented a new isocontour extraction 
method operating in semi automatic and fully automatic modes. 
The method has been applied to historical map analysis for the 
GIS project of backwater restoration of the Illinois River. To 
our knowledge, there is no other commercially available 
software that would provide similar capabilities. We presented 
three basic components of the extraction process, described 
some of the processing challenges and showed experimental 
results for the two modes of the developed algorithm.  

In future, we intend to complete a thorough performance study 
with synthetic data. Furthermore, we plan to finish our 
georeferencing capabilities of the developed tool in order to 
save out contour points in a latitude/longitude coordinate system 
(or UTM coordinate system) rather than in a pixel coordinate 
system. 
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