
Fusion of Voice, Gesture, and Human-Computer Interface
Controls for Remotely Operated Robot

Martin Urban and Peter Bajcsy
National Center for Supercomputing Applications (NCSA),

University of Illinois at Urbana-Champaign,
Champaign, Illinois, USA

{murban, pbajcsy}@ncsa.uiuc.edu

Abstract - This paper presents an overview of a robot
teleoperation system using voice, gesture, and human-
computer interface (HCI) controls. The system consists of
three basic software components including (a) acquisition
and recognition of control commands from multiple
inputs, (b) client-server network communication, and (c)
command fusion and execution by a robot and its arm.
The inputs for recognition of control commands come
from (1) wired or wireless microphones, (2) wired
orientation sensors mounted on human arms, and (3) HCI
devices, such as a mouse, a keyboard or a text file with
the sequence of control commands. The set of gesture
commands is based on the US Navy lexicon for
navigating aircrafts on the ground. Fusion of multiple
commands is performed by (a) analyzing time delays and
(b) assigning different priorities to commands and the
clients issuing those commands. Consistent and
conflicting commands are considered before a selected
command is executed by a robot. For an emergency
control, a video signal is sent to a monitoring station.

Keywords: Robot control, command fusion, real-time
navigation systems.

1 Introduction
In the past, several researchers have built systems that

combine multiple sensors for autonomous vehicle
navigation [7], [11]. In these applications, the problem of
interest is about multi-sensor data fusion in order to
reliably move a vehicle in an unknown environment. A
fusion of higher level decisions [10], such as commands,
is of interest when humans provide multiple inputs to a
system. We are considering a related problem, where
multiple human controls are used for navigating a robot in
a hazardous environment, or for taxiing Unmanned Aerial
Vehicles (UAVs) on an aircraft carrier deck in the
presence of other manned aircrafts [7], [8], [9]. In both
application scenarios, the control commands come from
one of the directors in charge (e.g., hazard managers or
flight deck directors) and should be executed by a
specially equipped robot or by an UAV. To simulate the
problem in a laboratory environment, we used an

ActivMedia Pioneer 2DX robot as a surrogate and
mapped the lexicon of flight director's commands to a set
of motion instructions available to the robot. We explored
multiple inputs for remote robot control including voice,
gestures and human-computer interfaces (HCI). The
overview of the system with multiple inputs is presented
in Figure 1.

Figure 1: An overview of a system for remote robot
control using sound, gesture and human-computer
interface inputs.

First, we implemented robot control using HCI inputs. A
user can use a keyboard and type in commands of his
choice and their corresponding parameters. Second, we
developed a template based speech recognition system so
that typing can be replaced by more user friendly
interface. Third, we added a gesture recognition system to
accommodate remote control execution in very noisy
environments, for instance, a carrier deck. Finally, we
enabled robot arm control via mouse and keyboard
interfaces in order to perform simple loading and
unloading operations. For emergency control purposes, we
mounted a wireless camera on the platform of a robot to
obtain video feedback.

In terms of system architecture, the software is designed
based on a client-server paradigm. All input devices
(microphones, orientation sensors, keyboard and mouse)
are attached to multiple computers that represent the

clients in the developed system. In our laboratory
experiments the robot is connected to a laptop using the
RS232 connection. This laptop acts as a server and
accepts TCP client connections over the network. Each
client can issue control commands to the robot by sending
commands to the server laptop. The server fuses the
commands from all clients, and resolves any conflicts that
may occur. After command conflicts are resolved the
commands are translated to a set of robot instructions.
These instructions are sent to the robot via the RS232
connection, and are then executed.

The main objective of this paper is to describe the
command processing flow as illustrated in Figure 2, and
present the fusion of multiple robot controls. According to
Figure 2, data are acquired first by using one of the
previously mentioned controls. After the data are
collected, they are classified using a recognition algorithm
into one of the 21 possible taxiing commands (text and
arm inputs do not require classification). Once the
command is recognized, it is sent as a packet over a local
area network (LAN) to a server that is directly connected
to the robot. Next, the server fuses all incoming
commands and decides which one will be sent to the
robot. These commands are then translated to robot
instructions which are executed by either the robot or its
arm. Finally, a camera mounted on the robot provides
video feedback that acts as another client controlling the
robot. The server can handle multiple client connections at
once and decides what commands should be executed.

Figure 2: Robot control system flow. Command
acquisition and recognition are described in Section 2.
Network architecture is outlined in Section 3. Command
fusion, instruction translation and execution, followed by
video feedback are overviewed in Section 4.

2 Multi-Sensor Command Recognition
The developed system uses the client side to do all

sensor input data acquisition and recognition. The
recognition output is one of the commands defined by the
US Navy lexicon [2]. The recognized command is sent to
a server residing on the robot. There are two types of

commands received by a server. First, it is the type of
robot movement commands which control the direction
and speed of the robot chassis. The second type
corresponds to robot arm commands that manipulate an
arm mounted on top of the chassis. We use four interfaces
to control the robot, which are keyboard, mouse,
microphone, and arm orientation sensors. The keyboard
and mouse are also used to control the arm. In our
experiments, we used Audio-Technica wireless
microphones or a laptop mounted microphone as audio
input, IS300 Pro Orientation Tracker sensors [1] as
gesture input, and regular PC interfaces as HCI input.
New inputs can be added without any change to the
system, as long as any new client providing commands
from another input device adheres to the communication
conventions of our robot command network packets.

2.1 Commands from Human-Computer

Interfaces
In general, commands from a client can control either

robot movement or robot arm. In our application, human-
computer interfaces are used for controlling robot
movement or robot arm movement.

The simplest and most reliable method for controlling a
robot and its arm is based on a keyboard input. In our
current system, the keyboard input allows a user (a) to
send single instructions or commands to the robot, or (b)
to specify a file name containing a sequence of commands
that is loaded and executed on the server side. If a
command is sent then only a single command value is
transmitted. When a single instruction is sent, then the
server receives a string with up to three numerical values
that are mapped to the ARIA ArRobot application
programming interfaces (API) [4]. If a file name is sent
then the server loads the text file from its hard drive and
executes the sequence of instructions accordingly.
 The Pioneer 2DX robot also comes with a 50cm robotic
arm that has five degrees of freedom. The arm can be
currently controlled via keyboard and mouse. One could
implement a joystick control as well. The current
implementation of the arm control allows users to move
one arm joint at a time, or to move all joints at once to a
set of predefined positions. Arm positions can be stored
in memory, written to text files on the client side, and then
re-used later on. We also implemented two
transformations that covert 3D spatial coordinates (x,y,z)
of the tip of the arm gripper to or from rotational angles of
the joints. These coordinates represent the x, y, z location
of the arm tip in millimeters from the origin defined at the
center of the joint 1.

2.2 Commands from Audio Sensors
 Our audio control using voice interface and based on
microphone sensors utilizes (1) a lexicon of audio controls
(temporally varying sound signals and their meaning), (2)

a definition of start and end of each audio control, and (3)
an appropriate feature representation of all audio control
signals that would maximize correct recognition. The
lexicon of audio controls is usually defined by its control
application. The temporal start and end points of an audio
control can be defined by thresholding amplitude of the
voice command from its background. Another approach is
to use additional cues during voice recording, for example,
a unique sound before the start and after the end of each
audio command. The issue of appropriate feature
representation can be resolved by (a) considering the
number of distinct commands, (b) application specific
real-time and computational requirements, (c) variability
in repeating the same audio control, and (d) similarity of
distinct audio controls.
 In our approach, the audio control is executed in two
phases. In the first phase also known as a training phase,
samples (or templates) of all valid sound signals from a
defined lexicon are collected, transformed into a set of
features and stored prior to any recognition. The start and
end points of each audio command are assigned manually,
automatically or by well-controlled recording. In the
second phase (at the run time), any incoming sound signal
is parsed into candidate and background temporal
segments by filtering and amplitude based thresholding.
The candidate segments are transformed into a set of
features and compared against the set of templates created
beforehand. The comparisons measure the distance
between the candidate sound and every template. The
template with the lowest distance to the candidate
determines the robot command. The temporally ordered
sequence of interpreted robot commands is passed to the
robot control component of the system. The drawback of
the template based recognition method is that it is user
dependent and requires each user to prerecord his set of
templates.

2.2.1 Training: Template Creation
In order to train the audio recognition system, we first
record at least one training sample in wave format for each
word or phrase that represents a command. It is possible
to record two or three samples per command to improve
recognition accuracy but increase system’s recognition
time. These recordings are then checked for clarity of
signal and manually (or semi-automatically) edited to
remove beginning and ending silence and noise sections
within the speech signal. After that, the recorded audio
waves are converted to 8-Khz, 8-bit, mono format. The
templates are formed by extracting audio features for each
command. In our work, we used Linear Frequency
Cepstral Coefficients (LFCC's) as audio features and they
are defined in Equation (1). A new vector of P = 10
coefficients is generated for each K = 256 sample points
of the wave at 128 sample intervals. The purpose of the
conversion to 8-Khz is to minimize the number of
extracted features, and hence decrease the run time needed
for feature comparisons.

)cos(
1

0 K
kiK

k
ki YLFCC ⋅⋅
⋅= ∑

−

=

π (1)

2.2.2 Run Time: Speech Recognition
At the run time, a user says a command (a word or a

phrase) into a microphone, which is recorded in a wave
file format. The system then re-samples the wave to
match the sampling frequency of the templates (8-Khz, 8
bit, mono). The re-sampled wave is filtered to detect the
start and end points of speech segments. In the first part of
the filtering process, the 4-th order high pass Chebyshev
filter is applied to reduce the low frequency background
noise. Next, filtering is completed by eliminating short
length, high amplitude blips, glitches, and spikes (values
are reduced to zero amplitude). The eliminated sounds
correspond to noise characterized by less than 50 ms
duration, with amplitude on the order of a spoken voice
signal. We chose 50 ms since any recognizable speech
sound a human makes is longer than 50 ms. Filtering is
important to reduce unnecessary computation during
silence periods and to preserve only speech signals in the
command candidate wave. Similarly to the template
creation described in Section 2.2.1, the LFCC features are
extracted from the filtered wave. Finally, a DTW
(Dynamic Time Warping) algorithm [3] is used to match
the extracted features with all templates created
previously. The template with the shortest error distance
is selected to be the input command, unless the shortest
distance is larger than a user-defined threshold of
recognition. In this case, the input word is classified as
unrecognized. This threshold could be experimentally
estimated and it was set to 200 in our experiments. The
DTW algorithm accounts for different temporal rates of
speech. Figure 3 shows an illustration of DTW error
computation for the input word "speech". The vertical axis
is the template word and horizontal is the candidate word.
Di,j is the overall error at times i and j for the chosen
LFCC vectors in the two speech signals. It is calculated by
summing the previous distance and the minimum local
distance di,j as shown in Eq. (2).

().,,min 1,1,1,1,, −−−−+= jijijijiji DDDdD (2)

The distance di,j in Eq. (2) is a Euclidean distance

between corresponding template and candidate LFCC
feature vectors. In this manner, the DTW-based algorithm
finds the minimum global distance from the template and
candidate speech beginnings to their end (bottom left to
top right in Figure 3). The final error EDTW between two
speech signals is the last computed Di,j, where i and j are
the final samples in their respective speech signals. EDTW
corresponds to the upper right corner of the illustration in
Figure 3.

Figure 3 : Illustration of DTW algorithm used to compare
two instances of the word "speech". The picture shows
the shortest global path from beginning to end, as well as
the calculation of error at coordinates (i, j).

2.2.3 Continuous Voice Signal Analysis
The voice recognition system has to be able to

continuously analyze incoming audio. This is
accomplished by recording the audio in 1 second long
segments and each second analyzing the concatenation of
the previous two recorded segments as shown in Figure 4.
Thus, during each second, the previous two seconds of
sound are analyzed. For example at time t=2 sections 1
and 2 are analyzed as shown in Figure 4. The reason for
choosing a two second interval is because all the gestures
in the US NAVY lexicon can be said using a normal rate
of speech within this time limit. The reason for splitting
the audio into one second segments is to account for the
case when a command word starts in one segment but
ends in the next as shown in first two cells of Figure 4.

Figure 4: Continuous analysis of voice signals. Each cell
represents 1 second. Centered red line represents silence,
and raised red line represents a voice signal. Two one
second segments are analyzed each second. The duration
is illustrated by the blue bar.

It could occur in the described recognition system that a

command is entirely contained within one segment of
interval [t, t+1], and the intervals [t-1, t] and [t+1, t+2]
contain only silence. In this case, this command will be
recognized at times t+1 and t+2. We designed the system
to disregard a command that was recognized in the
previous second. Figure 5 illustrates a few critical timing
cases. Silence is illustrated as relatively constant lines with
middle range amplitude, and voice is represented by
humps. The cases a, b, and c in Figure 5 will be
recognized correctly. The case d will be classified as
unrecognized because the real commands are recognized
in the previous and following seconds. The case e will

also be unrecognized because the real command occurred
in the previous second. The case f cannot be recognized
unless there is one second of silence before and after the
shown segments, in which case it will be just like the case
b. In the case g, the 2 seconds actually span 3 one second
segments and one of the 1st or 3rd segments contains
more than 50% silence. We found out experimentally that
a word can be recognized correctly most of the time even
if a small part of its signal is cut off at either end.

Figure 5: Possible cases of voice signals within the one
second segments. They are: (a) one command spread
across 2 seconds; (b) one command in one second and
silence in the next; (c) silence; (d) end of command in first
second and start of another command in 2nd second, (e)
end of command, (f) 2 quick commands in succession, and
(g) command spread across 3 segments.

2.2.4 Voice Recognition Success Rates
We achieved a 97.5% recognition rate using the

described recognition method, and with a small
vocabulary of two words, such as "go" and "stop". We
used three user generated templates for each word, and 20
recordings to be classified for each word. The run time
for classifying each word was less than 0.5 seconds.

2.3 Commands from Arm Orientation

Sensors
 In addition to the previously described robot control
interfaces, we developed an input control interface based
on arm gestures. The arm gesture recognition system uses
four orientation sensors [1] attached to person's arms.
Each sensor reports the yaw, pitch and roll values (Euler
angles). The values from all sensors are analyzed by
modeling gesture commands in the US NAVY lexicon [2].
Once a gesture is recognized a packet containing the
appropriate gesture value is sent to a server. One of the

differences between the gesture recognition and voice
recognition is that the voice command is said only once,
whereas the gestures are frequently formed by periodic
arm motions. If a gesture is recognized then theoretically
one should be sending packets containing a command
continuously. We decided to send a packet only the first
time a gesture is recognized and another packet when that
gesture stops being recognized. The gesture recognition
system is described more extensively in our previous work
[5], [6].

2.3.1 Gesture Recognition Algorithm
 The algorithm receives three values (yaw, pitch and roll
angles) from four sensors mounted on two arms. Each
value is classified into steady or oscillating. Next, the
value is categorized based on the magnitude as high,
medium or low. Using the above classes and categories,
each of the gestures in the lexicon was modeled so that the
recognition could take place in real-time. The drawback of
gesture recognition approach is that any new addition to
the already established lexicon of commands requires
developing new gesture models.

3 Client-Server Architecture
3.1 Client-Server Paradigm
 The server and clients communicate over a network
using TCP. Most of the communication comes from the
clients, but the server can also send packets back to the
clients. When a client recognizes a new command from
its input source it will send a packet to the server. There
are four types of packets that are used. Robot command
packets contain a numerical value that is bound to a file
containing a set of instructions on the server that the robot
will execute. Arm packets contain values representing the
current and desired, positions, movement velocities and
other parameters associated with all the joints of the robot
arm. File name packets contain a string of a file that is to
be loaded, but was not bound to a numerical robot
command beforehand. Finally, single instruction packet
types send across a value representing one instruction as
well as the parameters that this instruction requires. Each
packet is marked with a byte representing its type and the
priority of the client sending it.
 The arm packet type always contains six values
representing each joint of the arm. There is also a byte
which determines in what context these six values are to
be used. Arm packets going to the server can only be used
to tell the arm joints to move to the positions specified.
However, arm packets coming from the server can be of
several types. Most likely they are just update packets
telling the clients the current position of the arm joints, but
can also represent the minimum, maximum, center, home,
and movement velocity values of the joints. These are
necessary for the client to perform sanity checks on
allowed arm movements as well as some calculations like

converting arm joint byte values to degrees and vice-
versa.
 The robot type packet can also vary. All of our robot
type packets come from the clients, and we never send any
robot type packets from the server, although this can be
done. Most of the time the packet contains a single
command value, which is mapped to one of the NAVY
lexicon gestures. Such packet tells the server to execute a
file containing instructions representing this gesture.
There can also be other flags attached that can
immediately stop the arm or robot without having to be
deciphered as commands.
 File name packets and single instruction packets have a
non varying structure and always contain the same kind of
information. Both are to be used for client to server
communication only.

3.2 System Advantages and Disadvantages
 The advantages of this client-server architecture are
modulation, no human presence required at the location of
the robot, and wireless remote control of the robot. Each
client can be written separately and in a different
programming language. It can also run on any operating
system as long as the client can send and receive a byte
stream over a TCP connection. This does not require for
the server or other clients to be changed whenever a new
client is created. This is very useful for the addition of
new command interfaces in the future as the existing
structure does not need to be changed.
 There are several disadvantages to this system however.
First are the delays that result from the network, these
appear to be insignificant for us but if the robot is to be
controlled across continents they might present problems.
The second drawback is that if the users on different
clients have conflicting agendas they can hinder and undo
each others work, which requires an implementation of
client priorities. However we assume the clients have a
common interest.

3.3 Command Delays

There are numerous delays that happen between the
time a user issues a command, and the time that the robot
starts performing the instructions associated with the given
command. These delays are shown in Figure 6. Some
delays occur on the client side, while other delays occur
on the server side. The server side delays are independent
of the input method used on the client side. Therefore the
server side delays have the same effect on all commands.
 The first client side delay is caused by the acquisition of
the input. In the case of speech recognition, it can take up
to 2 seconds to issue an audio command. For gesture
recognition the time to repeat an arm movement enough
times to detect oscillation can also take a couple of
seconds. The next client side delay is caused by the
recognition algorithm. In speech and gesture cases,
recognition algorithms take less than 500ms. However the

recognition delay is also dependent on the client machine
speed. Since the purpose of our system is to control the
robot in real time we assume that all clients can handle the
command recognition in a small amount of time.

The next delay results from the command being sent
over the network to the computer running the robot server.
This delay can vary with the current performance of the
network and internet, but under ideal conditions, all the
clients are located on the same network as the server. If
we assume that everything is on the same network the
delay is less than 1 ms.

After the packet is sent over the network to the server,
three types of delays occur on the server side. The first
delay comes from the analysis of command conflicts and
the command to robot instruction translation. Command
conflicts are resolved in an insignificant amount of time.
The command to instruction translations can take up to 0.3
ms if a direct hard drive access is used. However, if we
loaded all the command to instruction translation files into
memory when the server starts, the translation delay could
be decreased to about 0.001 ms. Next server side delay is
caused by sending the instructions to the robot over an
RS232 serial cable, but we have no way of measuring how
long this takes. Finally, there is also a delay that occurs
on the robot itself when it sends the appropriate wheel
velocity commands to its motors, as well as the delay of
overcoming the inertia of its previous state.

If we disregard the sensor data collection time, the
overall biggest delay occurs in the client side recognition
algorithm. This can cause problems if one client is faster
than another, or if the recognition algorithm is less
complex for one type of input than another. Therefore it is
possible that one command is issued first on a slower
client followed by another command issued on a faster
client. Due to the recognition processing delay the
command that is issued first is actually sent over the
network after the command from the faster client, and will
also be executed second by the server.

Figure 6: Delays occurring between the time a command
is given and executed by robot

4 Fusion and Execution of Commands
 When more than one command is received by the

server at almost the same time command conflicts can
occur. By our default, a conflict can occur when a new
command is received within 250 ms after the previously

received command. To deal with conflicts we introduced
two types of priorities, such as command and client
priorities. Command priorities decide which possible
commands are more important than others. Client
priorities correspond to the reliabilities of the clients’
command recognitions. Another way of dealing with the
command conflicts is to use a majority voting method. We
assume that all the clients trying to run the robot have the
same intentions and are monitoring the same environment
with different sensing methods. Thus, when many
commands arrive at the same time, the command with the
highest count will be executed once and the others will be
discarded. Currently we check command priorities first
and if the conflict has not been resolved then we check the
client priorities. The reason why client priorities are not
checked before command priorities is to allow stop
commands to have the highest priority no matter what
client type they come from.

We describe assignment of priorities in the next two
sub-sections. Then, we classify the simultaneous
commands into consistent and conflicting commands, and
describe them in sections 4.3 and 4.4. One could approach
the problem of simultaneous occurrences of multiple
commands by combining the commands (e.g., Move
Ahead and Turn Left). However, this solution would have
to be driven by other applications and the command
combination would have to be carefyllu scrutinized, for
instance, Move Ahead and Stop.

4.1 Command Priorities

To cope with command conflicts we prioritized the 21
possible NAVY commands. When the second received
command had higher priority than the first one, the second
one would overwrite the first command. If the second
command had equal or lower priority as the first one, then
the first one would continue its execution until it finishes
or another command overwrites it later in time. All
commands were given priority value ranging from 0
(highest priority) to 21(lowest priority). Due to the safety
issues related to the robot and its surrounding, the Stop
command was given the highest priority. We decided to
rank the priority of the other remaining commands based
on the robot movement velocity. Thus, the next highest
priority after Stop was given to the commands Brakes,
then Slow Down, and Slow Down Left/Right Engine. The
commands with constant velocities, such as Move Ahead
or Turn Right/Left were given equal priorities, but lower
than the previous group. The next lower priority was
given to commands that increase the movement speed of
the robot. An unrecognized command was given the
lowest priority.
4.2 Client Priorities
 Each client has a different recognition success rate and
therefore commands coming from some clients are more
reliable than those coming from other clients. When two
or more conflicting commands are received from different

clients at about the same time it may be hard to decide the
order of execution or perhaps which commands should get
executed and which ones should not. For this reason we
introduced a client priority value. This way clients with
high reliability, such as pure text and mouse input clients
have the highest priority. We assume that a user always
inputs correct commands. Clients that involve gesture,
speech or other sensors with recognition rates below 100%
have their priorities reduced based on our experimental
results of their success rates. One problem that arises with
the client priorities is whether the priority value is
assigned at the client or server end. The server does not
know what kind of clients are connected to it, nor can it
know beforehand what new clients types will be
connected in the future. The design of our system is to
accommodate an unlimited number of various client types
and hence the priority value is decided on by the client
itself. This priority assignment could present a problem if
an unreliable client would assign itself the highest priority.
To remedy this potential problem, we use a filter on the
server side that accepts or rejects client connections based
on their IP addresses or other criteria. In this manner, only
clients that are trusted by the server and correctly assigned
a priority value for themselves are accepted.

4.3 Consistent Commands

The first class of simultaneous commands is labeled as
consistent commands. Simultaneous consistent commands
occur when each client recognizes and issues the same
command. Figure 7a shows two commands of type K
being received within the 250ms conflict detection
interval. If command K (e.g. Move Ahead) arrives at the
server at time t, and again at time t+dt (dt is less than the
default priority delay check of 250 ms), only the first copy
of the command K issued at time t is executed. There is
no need for the server to resend the same command to the
robot again since one of the two situations would happen.
First, the robot's actions would seem unaffected, for
example, the robot is already moving ahead. Second, the
robot might repeat what it has already done or started
doing at the first execution of the command K, for
instance, it is turning at a given angle. For this example,
the robot could end up in an undesired position because it
would turn twice the desired angle. As a consequence,
time would be wasted to issue a new command to correct
the robot’s position. The priority delay check value is
insignificant compared to the time it takes for the robot to
move to a new position. Thus, by the time all clients’
sensors detect and recognize a new command, the delay
timer on the previous command will have expired. For an
expired delay timer, new incoming commands will not be
in conflict with the commands previously executed
between times t and d+dt.

4.4 Conflicting Commands
The second class of simultaneous commands is labeled

as conflicting commands. As shown in Figure 7b,
conflicting commands occur when a command K is issued
at the time t and a command L at the time t+dt. If L has
higher priority, then L will overwrite K starting at time
t+dt. This would be the case of K being Move Ahead, and
L being Stop. However, if L has the same priority as K
(e.g. Turn Left and Turn Right) then L will be ignored and
K will continue to execute. If L has lower priority than K,
then again L will be ignored and K will continue to
execute. The third possibility is that more than two
commands are received between the times t and t+250 ms
as shown in Figure 7c. In this case, the majority voting
method is used. The count of each command type received
is determined and the one with the highest count wins. In
the case of two command type counts being equal, we
consider again the priorities of all commands as well as
the average or maximum priorities of the clients sending
each command. For example if 10 commands arrive and 9
are the same, then the most likely command is the one that
arrived 9 times. However, if 10 commands arrive with 4
being of type K, 4 of type L, 1 of type M and 1 of type N,
as shown in Figure 7c then the answer is not as clear. In
this case, K and L both have the highest occurrence. Thus,
the command priorities of K and L are compared, and if
the conflict were not resolved then the client priorities
would be used. We could either take the average priority
of the 4 clients of K and the 4 clients of L, or use the
highest client priority from each to determine which one
from K or L would be executed as described earlier in this
section.

Figure 7: Illustration of possible command conflicts. The
symbols K, L, M and N denote different robot commands.
The pictures show the cases of A) 2 identical commands,
B) 2 conflicting commands, and C) many conflicting
commands.

4.5 Video Feedback
A forward facing camera mounted on the back of the

robot provides visual feedback about the command
execution. This feedback is analyzed by another client,
which then sends robot commands to the server. The video

from the robot’s camera can be analyzed for various
reasons. Currently we use it for movement and color
detection.

The motion detector analyzes the scene of the video and
is attuned to find human controllers. It is intended to
detect when a new arm gesture operator attempts to
control the robot. We use operators wearing a red and
yellow shirt. When one operator intends to pass control to
another one he gives a “Pass Control” command by
pointing in the direction of another human controller. In
order to execute the “Pass Control” command, the robot
needs to find the new operator, which can only be done
through a visual search. Video analysis can provide the
direction in which the new operator is located. The video
feedback will then send a turn robot command to the
server. The video is continuously analyzed to detect the
correct shirt color until the robot is turned in the direction
of the new operator. At this point, a new operator and its
client controls take over the robot operation. The old
operator’s client can be either disconnected or ignored as
it is no longer in control of this robot.

5 Conclusions
 We have developed a system that can be used to control
a robot using an unlimited number of clients and address
the problem of command control fusion. In our
experiments we used four input types to control the robot
and the arm. These were human-computer interfaces such
as keyboard and mouse, as well as other interfaces
including an audio sensor and arm orientation sensors.
The control of the robot can also be handled by sensor
input types not discussed in this paper. The prototype
robot control system is independent of the types of clients
that connect to the robot. The main focus of our paper is
on the fusion of all input methods into one robot
command. We considered timing delays, simultaneous
commands, and client and server interpretation of robot
commands. Video feedback from the robot was used as
another control client to improve system’s performance
when multiple robot operators are present.

The developed system does not necessarily have to be
used for simulations of UAV navigation. It can be used for
any user-defined lexicon of commands, and a user can
create his command to robot instruction mappings.
Similarly, the speech recognition software can be used by
itself, since it is template-based, and the vocabulary of
valid commands can defined depending on an end
application.
6 Acknowledgement
This material is based upon work partially supported by
the National Center for Advanced Secure Systems
Research (NCASSR) of the Office of Naval Research
(ONR).

References
[1] Intersense web site: http://www.intersense.com/

[2] US Navy, "Field Manual FM1-564 Appendix A",
web site: http://www.adtdl.army.mil/cgi-bin/atdl.dll/fm/1-
564/AA.HTM

[3] Wrigley Stuart N. "Speech Recognition by Dynamic
Time Warping", web site:
http://www.dcs.shef.ac.uk/~stu/com326/

[4] ActivMedia documentation for ARIA, ActivMedia
support web site: http://robots.activmedia.com

[5] Urban M., P. Bajcsy, R. Kooper and J-C Lementec,
“Recognition of Arm Gestures Using Multiple Orientation
Sensors: Repeatability Assessment,” the 7th International
IEEE Conference on Intelligent Transportation Systems,
Washington, D.C., October 3-6, 2004, pp 553-558.

[6] Lementec J-C. and P. Bajcsy, “Recognition of Arm
Gestures Using Multiple Orientation Sensors: Gesture
Classification,” the 7th International IEEE Conference on
Intelligent Transportation Systems, Washington, D.C.,
October 3-6, 2004, pp 965-970.

[7] Kak A. and A. Kosaka, “Multisensor Fusion for
Sensory Intelligence in Robotics,” Proceedings of
Workshop on Foundation of Information/Decision
Fusion: Applications to Engineering Problems, August 7-
9, 1996, Washington D.C.

[8] Cheng, V. H. L., V. Sharma, and D. C. Foyle,
“Study of aircraft taxi performance for enhancing airport
surface traffic control,” IEEE Trans. Intelligent
Transportation Systems, Vol. 2, No. 2, June 2001.

[9] Taxiway Navigation And Situation Awareness
System (T-NASA) web page: http://human-
factors.arc.nasa.gov/ihi/hcsl/T-NASA.html.

[10] Fong T., "Collaborative Control: A Robot-Centric
Model for Vehicle Teleoperation," Ph.D. Dissertation,
CMU-RI-TR-01-34, November 2001 (156 p).

[11] Kam, X. Zhu, and P. Kalata. "Sensor fusion for
mobile robot navigation." Proc. IEEE, 85(1):108--119,
Jan. 1997.

[12] Luo, R.C. Lin, M.-H. Scherp, R.S. "Dynamic
multi-sensor data fusion system for intelligent robots,"
IEEE Journal of Robotics and Automation, Vol. 4, No. 4
August 1988.

