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Abstract 
 

We present an overview of DNA microarray image re-
quirements for automated processing and information 
extraction from spotted glass slides. Motivation of our 
review comes from the need to automate high-throughput 
microarray data processing due to exponentially growing 
amounts of microarray data. In order to automate mi-
croarray image processing and draw biologically mean-
ingful conclusions from experiments, one has to under-
stand the processing flow, modeling assumptions, uncer-
tainties involved, and the computational tradeoffs of mul-
tiple approaches.  We present a model of an ideal mi-
croarray image and microarray deviations from the 
model in real experiments. In the summary, we discuss 
several open problems and the current challenges of 
high-throughput microarray image processing. 
 
1. Introduction 
 
DNA microarray image processing is one of the informa-
tion extraction problems occurring in molecular biology 
and bioinformatics [12]. Molecular biologists and bioin-
formaticians are using microarray technology for identi-
fying a gene in a biological sequence and predicting the 
function of the identified gene within a larger system [6] 
(although there is still an active debate about how to de-
fine the bioinformatics discipline [8]). Microarray tech-
nology is based on creating DNA microarrays that are 
typically composed of thousands of DNA sequences, 
called probes, fixed to a glass or silicon substrate. Usu-
ally, samples from two sources are labeled with different 
fluorescent molecules (emitting at red and green wave-
lengths) and hybridized together on the same array. The 
array is then scanned by activation with lasers at the ap-
propriate wavelength to excite each dye. The relative 
fluorescence between each dye on each spot is then re-
corded and a composite image may be produced. The 

relative intensities of each channel represent the relative 
abundance of the RNA or DNA product in each of the 
two samples.  

Since the invention of microarray technology in 
1995, researchers developed several microarray image 
processing methods, statistical models and data mining 
techniques that are specific to DNA microarray  analysis 
[13]. These analyses are usually part of a microarray data 
processing workflow that includes, grid alignment, spot 
segmentation, quality assurance, data quantification and 
normalization, identification of differentially expressed 
genes and their significance testing, and data mining. An 
example of microarray data processing workflow is illus-
trated in Figure 1. The subset of image processing steps is 
enclosed with a dashed line in Figure 1.  
  

 
Figure 1: Microarray data processing workflow.  The 
diagram stresses the requirement to archive both raw and 
processed data. 

The major tasks of DNA microarray image process-
ing are (1) to identify the array format including the array 
layout, spot size and shape, spot intensities, distances 
between spots, and background fluorescence, and (2) to 
extract spot descriptors, as well as the uncertainty of the 
descriptors that represent the underlying microarray ex-



periment. Biological conclusions are then drawn based on 
the results from data mining and statistical analysis of all 
extracted descriptors. The reliability of spot descriptors 
depends on many different factors [18]. For example, one 
could list basic factors, such as microarray technology 
components, and protocols for array production, sample 
labeling, hybridization and image acquisition. Printing 
parameters, such as pin size and shape, printing speed, 
temperature and humidity, printing buffers and deposition 
surface, will all affect the size and morphology of the 
individual spots. The type of glass and coating, blocking 
agents, hybridization and wash buffers will affect back-
ground fluorescence. DNA microarray image analysis 
programs must be easily adapted to these varying parame-
ters. 

In this paper, we will overview microarray image 
processing requirements since their understanding is criti-
cal for automation in high throughput microarray envi-
ronments. We present a model of an ideal microarray 
image and overview microarray variations in real experi-
ments. In the summary, we discuss several open problems 
and the current challenges of high-throughput microarray 
image processing. 

 

2. Microarray Image Processing Require-
ments 
 
In order to choose an appropriate image processing ap-
proach and automate DNA microarray image analysis, 
one has to understand variations of input microarray im-
ages in terms of (1) the image content including fore-
ground and background morphology (e.g., grid layout, 
spot location, shape and size), and intensity information 
(e.g., spot descriptors derived from foreground and back-
ground intensities), (2) the computer characteristics of 
input digital images (e.g., number of channels, number of 
bytes per pixel, file format). Figure 2 shows two exam-
ples of microarray images and their very different appear-
ance. These variations have to be compensated by mi-
croarray image processing algorithms so that the process-
ing performance meets expected accuracy and speed re-
quirements.  

  
Figure 2: Examples of microarray images with double-
fluorescent (left) and radioactive (right) labeled samples 
that differ in terms of the content (spot geometry, spot 
size and intensity meaning) and computer characteristics 
(number of channels and number of bytes per pixel).  

What are our expected accuracy and speed require-
ments on microarray image processing? To answer this 
question, we consider an ideal microarray image first. 
Next, we describe an overview of the current understand-
ing of image variations and their sources. Finally, we 
present the image processing requirements that one 
should strive to meet. 

 

2.1. Ideal Microarray Image 
 
First, let us define an “ideal” cDNA microarray image in 
terms of its image content. The image content would be 
characterized by deterministic grid geometry, known 
background intensity with zero uncertainty, pre-defined 
spot shape (morphology), and constant spot intensity that 
(a) is different from the background, (b) is directly pro-
portional to the biological phenomenon (up- or –down-
regulation), and (c) has zero uncertainty for all spots. 
Figure 3 shows an example of such an ideal microarray 
image. While finding such an ideal cDNA image is 
probably a pure utopia, it is a good starting point for un-
derstanding image variations and possibly simulating 
them [3].  

 

Figure 3: Illustration of an “ideal” microarray image. 

Another aspect of an “ideal” cDNA microarray im-
age can be expressed in terms of statistical confidence. If 
one could not possibly acquire an ideal microarray image, 
then a high statistical confidence in microarray measure-
ments would be obtained with a very large number of 
pixels per spot (theoretically it would reach infinity). 
However, the cost of experiments, the limitations of laser 
scanners in terms of image resolution, storage of ex-
tremely high resolution images and other specimen prepa-
ration issues are the real world constraints that have to be 
taken into account. 

The above considerations about an “ideal” microar-
ray image can be used for simulations [3]. Simulations of 
cDNA microarray images can generate data sets for test-
ing multiple microarray processing algorithms. Motiva-
tion for developing microarray image simulation pro-
grams also comes from the fact that it is difficult to obtain 
(a) physical ground truth as an image valuation standard 
because of the image preparation complexity, and (b) 
large number of replicates of biological samples as a sta-



tistically significant standard because of the cost. In addi-
tion, simulations can provide scientific insights about 
various impacts of microarray preparation fluctuations on 
the accuracy of final biological conclusions. However, 
while simulations improve our understanding, they have 
to be verified by processing real microarray images. An-
other challenge with simulations is related to setting input 
simulation parameters since they might depend on indi-
vidual laboratory procedures and on each microarray ac-
quisition apparatus.  

 

2.2. Sources of Microarray Image Variations  
 
Let us investigate sources of DNA microarray image 
variations. The cDNA technology is a complex electrical-
optical-chemical process that spans (a) cDNA slide fabri-
cation, (b) mRNA preparation, (c) fluorescence dye label-
ing, (d) gene hybridization, (e) robotic spotting, (f) green 
and red fluorophores excitation by lasers, (g) imaging 
using optics, (h) slide scanning, (i) analog to digital con-
version using either charge-coupled devices (CCD) or 
photomultiplier tubes (PMT), and (j) finally image stor-
age and archiving. It is hard to estimate the number of 
random factors in this complex electrical-optical-
chemical process and hence we will focus only a few 
major factors.  

We should perhaps mention that some of the varia-
tions are temporally varying, some are ergodic (no sam-
ple helps meaningfully predict values that are very far 
away in time from that sample), and some appear as sys-
tematic errors more than as random errors. We overview 
a few sources of image variations observed in fore-
ground, background and intensity information. 

Variations of microarray image channels: Based on 
the cDNA labeling type used during microarray slide 
preparation (hybridization), one can obtain, for instance, 
single-, double- or multi-fluorescent images. Most mi-
croarray data contain double-fluorescent images from 
scanners that operate at two wavelengths, e.g., 532nm 
(red) and 632nm (green) wavelengths forming two chan-
nels shown in Figure 2 left. In general, microarray image 
data can consist of any number of channels. It is possible 
to foresee the use of more than two or three channels in 
future, for example, by using hyperspectral imaging [2].  

Another variation of microarray image channels is 
the storage file format, data compression and data accu-
racy (number of bytes per pixel). For example, a storage 
file format with lossy data compression introduces unde-
sirable spatial blur of spots and the microarray image 
analysis becomes less accurate. Similarly, the number of 
bits per pixel has to accommodate the dynamic range of 

an analog signal produced by the red or green fluoropho-
res excitation due to laser illumination. Dynamic range 
corresponds to the maximum minus minimum measured 
amplitude, and any value outside of the range [min, max] 
will be mapped to either min or max. For a fixed number 
of bits and increasing dynamic range, the uncertainty of 
each intensity measurement increases. In other words, the 
bins for all analog values converted to the same digital 
number are becoming wider. Figure 4 illustrates this con-
cept for a digital number represented by two bits.  

 

Figure 4: Illustration of data accuracy, uncertainty and 
dynamic range dependencies.  

In general, microarray image processing algorithms 
should be able to handle any number of input channels, 
file format and data accuracy. It should be understood 
that image analysis results will contain some uncertainty 
due to file storage and datum accuracy constraints.  

Variations of grid geometry: A microarray slide prepa-
ration should be considered as one source of variation in 
grid geometry [4], [10], and [17]. For example, it is im-
portant to know that if a spotting machine with several 
dipping pins prints multiple 2D arrays of spots, then the 
dipping pins might bend over time and cause irregularity 
in a 2D arrangement of the printed spots [4]. If measured 
spot grids are unpredictably irregular then template-based 
approach to finding spots [14] leads to (a) inaccurate re-
sults or (b) unacceptable costs for creating grid templates 
that would be custom-tuned to each batch of observed 
grid geometries. An example of alignment inaccuracies is 
shown in Figure 5. 

Similarly, any rotational offset of a slide or dipping 
pins will cause a rotated 2D grid in a microarray image 
with respect to the image edge. Figure 6 shows an exam-
ple of a rotated sub-grid with irregularly spaced rows and 
columns. Other sources of variations in spot locations are 
the slide material, such as nylon filters, glass slides, and 
probe types, such as radioactively labeled probes and 
fluorescently labeled probes [16]. These variations can be 
caused (a) by mechanical strain (nylon filters), or (b) by 
low discrimination power for small surface areas (glass 



slides), strong background signal (fluorescently labeled 
probes) or strong signal interference of neighboring spots 
(radioactively labeled spots). The variations due to me-
chanical strain introduce warping into the grid geometry. 
It is important to understand the strain extreme cases in 
order to limit the search space of grid geometry.  

  

Figure 5:  Template-based alignment results obtained by 
visually aligning the left two columns (left) or the right 
two columns (right) of microarray spots.  

 

Figure 6: Irregularly spaced and rotated grid geometry of 
microarray spots. 

Due to a small discrimination power, many spots 
might not be detected [4]. Figure 2 illustrates that many 
spots might be missing from a 2D array because spot sig-
nals are undistinguishable from the background. The ab-
sence of spots in a grid poses a challenge for automated 
grid alignment in addition to other spot location varia-
tions. Clearly, missing spots decrease the likelihood of 
successfully identifying grid configurations by data 
driven approaches because of a smaller amount of grid 
evidence. For example, a fully automated grid alignment 
method would fail to detect correctly a grid if one row of 
spots from the grid along its border would be completely 
missing (no evidence about the row existence as illus-
trated in Figure 7).  

 

Figure 7: Four sub-grids on one microarray slide. The 
lower right sub-grid has one less row than other sub-
grids. 

Variations of background: Background variations occur 
due to (a) microarray slide preparation (hybridization and 
spotting errors), (b) inappropriate acquisition procedures 
(presence of dust or dirt), and (c) image acquisition in-
struments (non-linearity of imaging components). While 
the (a) and (b) types of background variations should be 
detected by microarray quality assurance (see example in 
Figure 8), the variation due to image acquisition instru-
ments cannot be removed by a user. Thus, many image 
processing algorithms compensate for background varia-
tions by modeling its probability distribution function 
(PDF). The most frequent model is the Gaussian PDF [3]. 
Other statistical models to consider would be a uniform 
PDF or a functional PDF depending on the observed 
properties of acquired images. For instance, a functional 
PDF could simulate a positive or negative slant surface 
function (background intensity shading) that would be 
combined with spike noise, where spike noise intensities 
follow an exponential distribution. Figure 9 shows back-
ground examples that could be modeled by Normal or 
Student’s t PDF models. It is also necessary to mention 
that while all channels of microarray images might follow 
the same PDF, each channel would likely have different 
parameters for the chosen PDF model.  

 

Figure 8: Background variation due to slide washing that 
should be detected by quality assurance. 

  

Figure 9: Examples of background noise that could be 
modeled with PDF models of noise.  (Gaussian PDF – 
left and Student’s t PDF – right). 

Variations of spot morphology: Another issue to men-
tion is the shape of microarray grid elements (or grid 
shape primitives). Although the majority of current 
cDNA microarray imagery is produced with circular 
spots as shape primitives, one can find the use of other 
primitive shapes, e.g., lines or rectangles (see the 
CLONDIAG chip [5]). It is very likely that other primi-
tive shapes than a round spot shape will be used in mi-



croarray technology in the future. Figure 10 shows exam-
ples of rectangular and triangular shapes. 
 

  
Figure 10: Examples of spot morphologies other than 
circular. 

For the currently most common circular spots, there 
exist a large number of shape deviations (equals to the 
total number of foreground and background pixel combi-
nations inside of a grid cell). Figure 11 shows a few 
classes of morphological deviations as found in microar-
ray images. There are many more spot deviations that 
have to be analyzed during spot quality assessment. The 
goal of assessment is to determine a validity of measured 
spot information and our confidence in deriving any con-
clusions based on the spot measurement.  

  
Figure 11: Spatial and morphological variations of spots 
(from left to right, top row first): (a) a regular spot, (b) an 
inverse spot or a ghost shape, (c) a spatially deviating 
spot inside of a grid cell, (d) a spot radius deviation, (e) a 
tapering spot or a comet shape, (f) a spot with a hole or a 
doughnut shape, (g) a partially missing spot and (h) a 
scratched spot. 
Variations of foreground and background intensities: 
Foreground and background intensity variations are also 
present in microarray image analysis due to slide materi-
als and several labeling techniques. For example, while 
the fluorescent labeling type leads to microarray images 
with dark background and bright spots (signal), other 
labeling types with or without radio-isotopic labels lead 
to images with bright background and dark spots (see 
Figure 2 right). A slide material introduces another inten-
sity variation, for example, coated glass slides or nylon 
membrane or silicon chips. One should understand that it 
is the background and foreground intensity difference 
that is relevant to the biological meaning.  However, the 
range of the intensity difference (max – min) and the am-
plitude of background and foreground variations affect 
the discrimination of these two classes, as well as our 

confidence in accurate separation of background and 
foreground. 

Although we described variations of background 
and the dark-bright schemes for background and fore-
ground, we did not address the issue of foreground spot 
intensity variations. The reason for this is that microarray 
images often represent experiments of a discovery type. 
When discovering biological properties, one cannot pre-
dict measurement outcomes such as spot intensity pro-
files. Thus, one should only adjust parameters of meas-
urement instruments to fully cover the dynamic range of 
spot intensities so that intensity values are not saturated 
and possibly discernable from others. As of now, intensi-
ties of each spot are modeled according to our previously 
described ideal microarray image but future research 
might reveal additional information in the intensity pro-
files of individual spots. 

 

3. Summary 
 
After reviewing variations of microarray images, one 
would like to design automated microarray image proc-
essing algorithms that are robust to all variations. The 
robustness would include (1) any number of channels, (2) 
any storage and computer representation, (3) variable grid 
and spot locations, (4) unknown background noise, (5) 
variable background and foreground dark-bright schemes, 
(6) deviations from spot shapes and (7) deviations from 
expected spot intensity profiles. Furthermore, the proc-
essing algorithms should recognize those cases when 
missing spots disable automation (or accurate automated 
image processing) because of the lack of grid evidence. 

For anyone who performs scientific experiments 
with microarray technology, it is important to guarantee 
microarray image processing repeatability. Assuming that 
an algorithm is executed with the same data, we expect to 
obtain the same results every time we perform an image 
processing step. In order to achieve this goal, algorithms 
should be “parameter free” so that the same algorithm can 
be applied repeatedly without any bias with respect to a 
user’s parameter selection. Thus, for instance, any manual 
positioning of a grid template is not only tedious and 
time-consuming but also undesirable since the grid align-
ment step cannot then be repeated easily. A concrete ex-
ample of the repeatability issues is presented in [11], 
where authors compared results obtained by two different 
users from the same slide (optic primordial dissected 
from E11.5 wild-type and aphakia mouse embryos) while 
using the ScanAlyze software package [7]. Each user 
provided the same input about grid layout first, and then 
placed multiple grids independently and refined the spot 
size and position. The outcome of the comparison led up 



to two-fold variations in the ratios arising from the grid 
placement differences.  

Finally, the amount of microarray image data is 
growing exponentially and so one is concerned about 
preparing sufficient storage and computational resources 
to meet the requirements of end users. For example, find-
ing a grid of spots can be achieved much faster from a 
sub-sampled microarray image (e.g., processing one out 
of 5x5 pixels), but the grid alignment accuracy would be 
less than if the original microarray image had been proc-
essed. There are clearly tradeoffs between computational 
resources (memory and speed/time) and alignment accu-
racy given a large number of microarray images [1]. 
While this issue might be resolved without any accuracy 
loss by using either supercomputers or distributed parallel 
computing with grid-based technology [9], it might still 
be beneficial to design image processing algorithms that 
could incorporate such resource limitations. 

DNA microarray image processing is a basic com-
ponent of learning about gene expression. We have over-
viewed several DNA microarray processing steps and 
their requirements for achieving automation in high 
throughput environments. In the future, researchers will 
have to address a few additional challenging issues in 
extracting reliable information about microarray experi-
ments. One of the future challenges of image processing 
will be the optimization of information extraction and the 
fine play between over saturation of an image and signals 
below detection level. A series of questions arises in this 
context. How can we increase the dynamic range? Can 
we use partially saturated spots? Shall we reject low qual-
ity spot data or attempt to extract whatever useful data 
can be saved? Can individual spots that are saturated be 
flagged and rescanned at lower PMT values in an auto-
mated fashion until relevant ratios are obtained? Can we 
construct composite images from different scanning in-
tensities to maximize the number of spots that (a) fall into 
detectable ranges with good ratios and (b) are not biased 
by pixels that are too high or too low in intensity?  

Other challenges are related to microarray image 
storage and archival, standardization, automation and 
fully automated high-throughput processing require-
ments. There is also a lack of understanding of microar-
ray images at pixel level and uncertainty propagation. 
The integration of gene expression information with other 
biological measurements and prior knowledge is also an 
open area of research. The above questions and chal-
lenges have to be answered by additional research and 
development.  
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