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ABSTRACT 

 

We present a new automatic grid alignment algorithm for detecting two-dimensional 

(2D) arrays of spots in DNA microarray images. Our motivation for this work is the lack of 

automation in high-throughput microarray data analysis that leads to (a) spatial inaccuracy of 

located spots and hence inaccuracy of extracted information from a spot, and (b) inconsistency of 

extracted features due to manual selection of grid alignment parameters. The proposed grid 

alignment algorithm is novel in the sense that (1) it can detect irregularly row- and column-

spaced spots in a 2D array, (2) it is independent of spot color and size, (3) it is general to localize 

a grid of other primitive shapes than the spot shapes, (4) it can perform grid alignment on any 

number of input channels, (5) it reduces the number of free parameters to minimum by data 

driven optimization of most algorithmic parameters and (6) it has a built-in speed versus accuracy 

tradeoff mechanism to accommodate user’s requirements on performance time and accuracy of 

the results. The developed algorithm also automatically identifies multiple blocks of 2D arrays, as 

it is the case in microarray images, and compensates for grid rotations in addition to grid 

translations. 

Key words: DNA microarray, spot alignment, image analysis, simulation, and quality 

control.  
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1 INTRODUCTION 

 

In general, the objective of any microarray data analysis is to draw biologically 

meaningful conclusions [1], [20].  There are many microarray analysis steps before a conclusion 

is made. A grid alignment (also known as addressing or gridding [23]) is one of the processing 

steps in microarray image analysis that registers a set of unevenly spaced, parallel and 

perpendicular lines (a template) with the image content representing a two-dimensional (2D) 

array of spots. The registration objective of the grid alignment step is to find all template 

descriptors, such as, line coordinates and their orientations, so that pairs of perpendicular lines 

intersect at the locations of a 2D array of spots in a microarray scan. Furthermore, this step has to 

identify any number of distinct grids of spots in one image. We denote a 2D array of spots as a 

grid of spots, and one array of spots among multiple 2D arrays as a block or a sub-array of spots 

[18]. In order to automate microarray analysis, the grid alignment step is needed before any spot 

segmentation and spot information extraction take place.  

Without providing too much background on microarray technology (see [1] Chapter 12, 

[2], [3], [4]), microarray images are generated by scanners using confocal laser microscopes that 

scan a microarray slide with several blocks of 2D arrays. The goal of microarray image analysis 

is to extract absolute or relative intensity values from each spot that represent gene expression 

levels or features. Biological conclusions are drawn based on the results from data mining and 

statistical analysis of all extracted features. We will describe in a great detail the spot localization 

process and some of its challenges. 

Before designing any automatic spot localization algorithm, one should consider a 

microarray slide preparation as a source of variations in spot locations [14], [16], [23]. For 

example, if a spotting machine with several dipping pins prints multiple 2D arrays of spots, then 

the dipping pins might bend over time and cause irregularity in a 2D arrangement of the printed 
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spots [14]. Similarly, any rotational offset of a slide or dipping pins will cause a rotated 2D grid 

in a microarray image with respect to the image edge. 

Based on the cDNA labeling type used during microarray slide preparation 

(hybridization), one can obtain, for instance, single-, double- or multi-fluorescent images. Most 

microarray data contain double-fluorescent images from scanners that operate at two 

wavelengths, e.g., 532nm (red) and 632nm (green) wavelengths forming two channels shown in 

Figure 1 left. In general, microarray image data can consist of any number channels. 

Furthermore, while the fluorescent labeling type leads to microarray images with dark 

background and bright spots (signal), other labeling types with or without radio-isotopic labels 

lead to images with bright background and dark spots (see Figure 1 right). A slide material 

introduces another color variation, for example, coated glass slides or nylon membrane or 2D gel 

materials. As more novel techniques will be developed, there will be no guarantee of fixed 

background and foreground colors in all microarray scans. It is also noticeable in Figure 1 that the 

spot size varies and many spots are missing from a 2D array (or low signal is detected). Current 

microarray slides, as well as future miniaturized microarray slides, require accommodating these 

variations in a design of automatic grid alignment methods.  

  

Figure 1: Examples of microarray images with double-fluorescent (left) and radioactive (right) 

dyes. The image on left contains two channels presented in red and green enhanced pseudo-color.  

Another issue to mention is the shape of a primitive in microarray 2D arrays. Although 

the majority of current microarray imagery is produced with circular spots as shape primitives, 

we have encountered references to other primitive shapes, e.g., lines or rectangles (see the 
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CLONDIAG chip [9] or Affymetrix chips [5]).  We believe and foresee that other primitive 

shapes than a spot shape will be used in microarray technology in future and the need for shape 

independent grid alignment will arise immediately.  

We would also like to introduce the issue of grid alignment repeatability. As many other 

microarray analysis steps, the grid alignment step is desired to be “parameter free” so that the 

same algorithm can be applied repeatedly without any bias with respect to a user’s parameter 

selection. Thus, any manual positioning of a grid template is not only tedious and time-

consuming but also undesirable since the alignment step cannot then be repeated easily. The same 

logic applies to algorithms with many free parameters that are set by a user. 

Lastly, one is concerned with processing an exponentially growing amount of microarray 

data in future. From the grid alignment algorithm viewpoint, finding a grid is always a tradeoff 

between computational resources (memory and speed/time) and alignment accuracy given a large 

number of microarray images. While this issue might be resolved without any accuracy loss by 

using either supercomputers or distributed parallel computing with grid-based technology [15], 

[21], it might be still beneficial to build into a grid alignment algorithm such a tradeoff in a short 

term. 

In a nutshell, the problem formulation of an ideal grid alignment algorithm should 

include the following design requirements. First, a grid alignment algorithm should find 

irregularly row- and column-spaced 2D arrays with translational and rotational offsets. Second, it 

should perform alignment on images with any number of input channels. Next, it should be color 

and spot size independent and independent of any chosen primitive shape. Lastly, it should be 

parameter “free” and should accommodate speed versus accuracy tradeoffs. We will present our 

proposed grid alignment method that strives to meet the aforementioned requirements. 

The proposed algorithm called GridLine [6] is built as a tool for aligning regular or 

irregular grid lines over grayscale or color (1 to N bands) DNA microarray images that contain a 

2D array of spots with varying radii and deviating spot's locations from perfect grid placements. 
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The GridLine algorithm is data driven and its goal is to find a set of mutually perpendicular lines 

that intersect at a center of each grid cell. A grid cell is defined as an area enclosing one spot and 

is part of a 2D array of spots.  From a processing standpoint, the algorithm assumes that sought 

lines intersect a large number of high contrast and low contrast areas in contrary to the 

background that is assumed to be homogeneous in color with some superimposed additive noise. 

In addition, line directions are not constrained and therefore any translated and rotated 2D array 

of spots can be detected. Furthermore, multiple distinct 2D sub-arrays (grids) can be found by 

partitioning an input image into sub-images and aligning each distinct grid separately. If the 

speed is an important issue then it is addressed by down-sampling input images. By running the 

GridLine algorithm on a smaller sized image (downsampled image), the speed could be improved 

with some sacrifice of alignment accuracy. The GridLine tool is a part of the microarray image 

analysis tool set described in [6].  

 

2 PREVIOUS WORK 

 

In the past, the problem of grid alignment has been addressed in two ways. First, the 

problem was simplified by using a very accurate technology, for example, in the case of 

Affymetrix chips [5]. Although the problem was simplified and hence the grid alignment became 

more accurate, the Affymetrix technology has been much more expensive than the technology 

with coated glass slides and thus the need for solving the grid alignment problem has remained. 

Second, the alignment problem was tackled with template-based and data-driven 

approaches. The template-based approach is the most prevalent in the previous literature and 

existing software packages, e.g., GenePix Pro by Axon Instruments [7], ScanAlyze [12] or 

GridOnArray by Scanalytics [8]. To our knowledge, the data-driven approach has been based on 

statistical analysis of 1D image projections [13], [17], [18] or used as part of image segmentation 

algorithms [19], [24]. While most of the currently available software packages enable manual 
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template matching [7], [12], [14] by adjusting spot size, spot spacing and grid location, some 

software products already incorporate an automatic refinement search for a grid location given 

size and spacing of spots [7], [10]. Nonetheless, irregular grids cannot be found with template-

based approaches unless the template is manually adjusted to fit pre-defined distortions [8]. The 

data-driven approaches are capable of finding irregular grids but are prone to misalignment due to 

spurious or missing spots and are also dependent on many parameters. 

Our proposed grid alignment is data-driven and uses statistical analysis of 1D projections 

of directional edge feature images. In comparison with other data-driven methods, our proposed 

method is not based on any segmentation optimization [19] and it is different from the methods 

described in [17], [18] by analyzing 1D projections of directional edge feature images as opposed 

to original intensity image. This difference makes the algorithm color independent since the edge 

features are color free. In addition, some parameters for statistical analysis are optimized 

automatically and it is our goal to design a completely parameter “free” algorithm in future.  

 

3 GRID ALIGNMENT METHOD 

 

The proposed grid alignment method is executed in several steps as illustrated in Figure 

2. The method is based on detecting intensity discontinuities at all spot locations of a 2D array 

and detecting homogeneous intensities in the background area of the spots. Thus, the underlying 

model of a microarray image assumes a homogeneous background region and heterogeneous 

foreground regions (spots). We present a data flow diagram in Figure 2 instead of a pseudo code 

and explain each module of the data flow next.   
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 Figure 2: Overall schema of the grid alignment algorithm. 

3.1 2D Array Processing 

First, in order to accommodate an arbitrary number of channels, all image channels are 

fused into one image by performing a logic OR operation (see “Channel Fusion” module in 

Figure 2). It is apparent that one would like to detect one common grid for all channels. However, 

it is very often that a grid cell would not contain any intensity variation indicating a spot in some 

input image channels. The fusion of all channels with logic Boolean OR operator will propagate 

foreground and background intensity variations into the grid alignment algorithm and increase its 

robustness assuming that there is little spurious variation in the background. Furthermore, fusing 

all channels reduces multi-channel computation and avoids the problem of merging multiple grids 

detected per each channel. 
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Figure 3: Microarray images of red (upper left) and green (upper right) channels that can be 

visualized in pseudo-color by combining channels (lower left) and are fused by Boolean OR 

function before processing (lower right). 

The second module denoted as “Down-sampling” addresses the issue of speed versus 

alignment accuracy. It is well known that the speed of most image-processing algorithm is 

linearly proportional to the number of pixels since every pixel has to be accessed at least once and 

processed in some way. Nonetheless, a grid alignment algorithm should detect 2D array of spots 

regardless of the spot’s radii. If two microarray images of the same size would contain NxM spots 

of radii R1 (image 1) and R2 (image 2), such that R1<R2, then the alignment of image 2 with 

spots of radius R2 could be performed faster by sub-sampling without any loss of accuracy with 

respect to the alignment performed on image 1. It follows that the tradeoff of speed (or 

computational requirements) versus grid alignment accuracy is also a function of spot size. In 

practice, down-sampling (or local averaging) is preferred instead of sub-sampling in order to 

preserve local spot information that could be completely eliminated by sub-sampling. 

The two branches in Figure 2 with the three modules denoted as “Edge Detection”, 

Histogram of 1D Projection” and “Score Function” show a separate treatment of horizontal and 

vertical grid lines. The reason for having a separate detection of horizontal and vertical grid lines 

is that many grids do not have evenly spaced rows and columns. The objective of finding 

horizontal and vertical grid lines is to identify all grid line intersections defining a spot location. 

The set of mutually perpendicular grid lines also defines grid cells that form a rectangular around 

each spot. The functionality of the three modules can be described as (a) feature formation (“Edge 
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Detection”), (b) statistical analysis of features (“Histogram of 1D Projection”) and (c) metric-

based ranking of line candidates (“Score Function”). The feature formation step is performed by 

using a differential gradient operator [22, Chapter 5.8] defined in Equation 1 for vertical and 

horizontal directions, where Kernel is the spatial extend of directional edge detection and I(i, j) is 

the image intensity value at image location (row, column) = (i, j). 

row j=col+kernel row+kernel j=col+kernel

i row kernel j=col-kernel i row j=col-kernel
( , ) ( , ) ( , )verticalEdge row col I i j I i j

= − =
= −∑ ∑ ∑ ∑  

col i=row+kernel col+kernel i=row+kernel

j col kernel i=row-kernel j col i=row-kernel
( , ) ( , ) ( , )horizontalEdge row col I i j I i j

= − =
= −∑ ∑ ∑ ∑  

Equation 1: Directional edge definitions. 

After each directional edge detector has been applied (see Figure 4), edge feature images are 

projected into 1D to measure frequency of edges (1D histogram) along each direction.  A score 

for each row and column (denoted Line) is computed from the two histograms according to the 

formula in Equation 2. The Sensitivity parameter determines what contrast values are considered 

to be due to signal as opposed to due to background noise variation. The score computation 

generates two curves of score as a function of row or column shown in Figure 4. 

( ) ( , )
i Sensitivity

Score Line HistValue Line i
>

= ∑  

Equation 2: Score definition 
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Figure 4: Feature images after horizontal (upper left) and vertical (upper right) edge detection and 

the formed corresponding score functions for detecting rows (lower left) and columns (lower 

right). 

The final set of mutually perpendicular lines is reported from the module “Grid 

Evaluation” and it is based on (a) the minimum score parameter and (b) the number of searched 

lines. For example, if the minimum score parameter is equal to zero then the resulting number of 

searched lines will include the top ranked lines. If there are fewer lines above the minimum score 

parameter than the number of searched lines then the result will contain only lines that meet the 

minimum score requirement. 

The grid alignment described in this Section so far has assumed that there is no grid 

rotation involved. Despite a well-controlled environment during a microarray image formation, 

an undesirable grid rotation occurs in practice. The problem of grid rotation is addressed by 

searching the space of expected rotational angles. The angular rotation becomes a grid variable 

that has to be found by conducting a grid alignment under a set of possible rotations (see module 

“Angular Optimization”). A user specifies the minimum and maximum angular rotation to narrow 

the search space since in general it can be any value between -45 and 45 degrees. An initial 

angular estimate can be made by analyzing four edges of a 2D array [17]. The overall score of 

each grid is computed as a sum of all line scores in Equation 2 and it is used for selecting the 

optimal grid rotation (Angle) by maximizing the TotalScore value. 

2 2

0 0
( ) ( , ) ( , )N FindRow N FindCol

i ji j
TotalScore Angle Score Row Angle Score Col Angle

= =
= +∑ ∑  

Equation 3: The overall grid score used for optimizing grid rotation. 
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In practice, there might be a strict regularity requirement on a grid. Any imposed 

regularity requirement can be performed by using the “Optional Regularity Enforcement” module 

in Figure 2. There are four types of grid that one can seek; irregular, regular rows, regular 

columns and square grid. The problem of imposing a regularity of an irregular set of lines 

(unevenly spaced lines) is resolved by computing a histogram of distances between adjacent lines 

and selecting the most frequent distance as the most likely correct line spacing. The final regular 

set of lines (evenly spaced lines) is determined with respect to the line with the highest score 

since the score indicates the most confidence in its location. A square grid is obtained by 

imposing the regularity requirement on both horizontal and vertical sets of lines. 

3.2 Parameter Optimization 

We should also mention that a parameter optimization is an integral part of the grid 

alignment algorithm. The basic set of parameters for running the GridLine algorithm consists of 

the following input variables: N2FindRow or N2FindCol is the number of expected rows or 

columns in each grid, MinAngle and MaxAngle define the range of expected grid rotations in 

degrees, DownSamp represents the down-sampling ratio if it is desirable to reduce computational 

requirements, Accept is the minimum score value from the range [0,100] for reporting a valid 

grid line, Sensitivity is the threshold value for separating background noise from signal and 

Kernel defines the spatial extend of directional edge detection.  

As in any other algorithm, a parameter optimization is accomplished by searching a space 

of parameters and selecting the “best” set of parameters given an evaluation metric. While the 

benefit of parameter optimization is a fully automated grid alignment tool, the drawback of 

optimization is the need for more computation and hence slower execution speed. In our case, the 

grid rotation parameter is a parameter that has to be searched in the entire space of grid rotations 

unless a user specifies smaller by setting the values of MinAngle and MaxAngle. Similarly, the 

optimal values of Kernel and DownSamp parameters can be estimated by knowing grid 

characteristics, such as a spot size and spot spacing.  Had the grid characteristics been given, 
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Kernel parameter would be set to a smaller value than the edge-to-edge spot distance and 

DownSamp to a value that preserves the spot size and spot spacing for a robust grid detection. To 

achieve fully automatic algorithm, one has to optimize grid rotation and these two parameters 

simultaneously. The current implementation optimizes the grid rotation, Kernel and DownSamp 

parameters automatically for a range of user specified values. 

However, it is possible to estimate other parameters, for instance, the Sensitivity 

parameter, without an exhaustive search by analyzing the global distribution of an original image. 

If a user entered an invalid value for the Sensitivity parameter then the algorithm would compute 

a 1D image histogram and determine the value for Sensitivity as a percentage of the distribution 

spread.  

From the list of basic parameters, the last three parameters to optimize are N2FindRow, 

N2FindCol and Accept.  These parameters can be optimized in an unsupervised way by detecting 

a sharp discontinuity in the score function. Without specifying the pair of N2FindRow and 

N2FindCol, or the value of Accept, or both, the output of data-driven analysis is a rank-ordered 

list of lines. A sharp discontinuity in the rank-ordered list of lines will determine (a) the values of 

N2FindRow and N2FindCol for each line set as the number of lines before the sharp discontinuity 

and (b) the value of Accept as the minimum score of the selected set of line in (a).  

3.3 Processing Multiple 2D Arrays 

It is very common in the case of DNA microarray image analysis that multiple distinct 2D 

sub-arrays of spots (grids) are present in one microarray image. These distinct grids are also 

arranged in a 2D array format thus the number of expected distinct grids can be defined by the 

number of grids along horizontal (row) and vertical (column) axes. The corresponding input 

parameters are denoted as N2FindGridRow and N2FindGridCol. 

It is possible to search for multiple distinct 2D arrays of spots (grids) in one image with the 

proposed grid alignment algorithm. The goal of this part of the algorithm is to partition the 

original image into sub-areas containing individual grids. Due to the nature of most frequently 
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occurring microarray images, it is performed by dividing the original image into rectangular sub-

areas based on N2FindGridRow and N2FindGridCol parameters and process each sub-area 

separately. 

If N2FindGridRow and N2FindGridCol are not available as input parameters then there is 

a need to optimize these input parameters as well. One way how to approach this problem is by 

searching for all irregular lines in the entire image and then analyzing the spacing of all found 

mutually perpendicular grid lines. Every large discontinuity in the line spacing will indicate the 

end of one and beginning of another block (2D arrays of spots). An example result is shown in 

Figure 5.  

   

Figure 5: An example result of processing the original image (left) with the proposed algorithm 

and analyzing discontinuities in line spacing (right) to partition the original image into sub-

images containing one sub-array per sub-image. 

Another approach to this optimization problem is to low pass (filter) the original image 

such that all 2D arrays of spots become primitives of a new grid formed by blocks. The filtered 

image can be analyzed the same way as any image with a single grid as it is shown in Figure 6 

left. If most of the sub-array spots are much brighter than the background intensities then each 

original sub-array becomes a rectangular primitive of a newly created 2D array in the filtered 

image (see Figure 6 right). The analysis of the created image with one 2D array will determine 

N2FindGridRow and N2FindGridCol parameters. However, this approach is less robust than the 
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previous one because of missing spots. Due to missing spots, a newly formed grid will contain 

primitives with holes of background color that cause a location ambiguity of primitives. 

  

Figure 6: The alignment result (left) obtained by filtering the image in Figure 5 (left) and 

searching for 2x2 grid lines with the proposed algorithm. A thresholded image (right) of the 

filtered image (left) demonstrates shape irregularity of primitives due to missing spots. 

In the later approach, one would immediately raise a question of grid shape primitives that 

has changed from spot shape (original image) to rectangular shape (filtered image). Fortunately, 

the proposed grid alignment method is capable of identifying grids with variable shape of grid 

primitives. It turns out that although the shape of grid primitives is important for a grid alignment 

task, the horizontal and vertical edge features used by the proposed method can model an 

arbitrary shape of the underlying grid primitive as long as the primitives are sufficiently 

separated. This capability of the proposed method can be utilized not only for finding the number 

of blocks in one image but also for other types of microarray images using other than spot shape 

primitives, for example, a rectangular shape used in CLONDIAG chips [9]. 

 

4 EXPERIMENTAL RESULTS 

 

This section demonstrates several capabilities of the proposed grid alignment algorithm 

and describes our robustness and performance evaluations of the proposed method. We conducted 

all experiments with measured microarray images consisting of two channels and synthetic 
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microarray images derived from measured images. The set of synthetic images was generated 

with multiple variations in spot size, color, shape and amount of intensity blur, as well as, with 

variations in 2D array arrangement, such as, rotated arrays, downsampled arrays or arrays with 

missing spots. Examples of measured microarray images are shown in Figure 1, Figure 3 and 

Figure 5. Synthetic images are used throughout this section. 

4.1 Capabilities of Alignment Method 

First, we investigated the impact of a number of input channels on alignment accuracy. We 

ran the grid alignment algorithm on each channel separately and then on a combined image with 

the logic Boolean OR operator. To illustrate spatial misalignment of all three resulting grids, we 

generated a mask with spots (radius = 5 pixels) at each grid cell for each grid result and combined 

the three generated masks into one color image (red contains the mask obtained from channel 1, 

green contains the mask obtained from channel 2 and blue contains the mask obtained from both 

channels at the same time). The color image with three masks and the difference between grid 

masks are shown in Figure 7. We evaluated quantitatively the total misalignment according to the 

formula in Equation 4 

 

Equation 4: Total misalignment error. 

and presented the experimental values in Table 1. The MisalignedPixelCount value is equal to a 

half of the white pixels shown in Figure 7 (middle and right) since any misalignment of estimated 

versus original spots has signal-to-background and background-to-signal components that should 

be counted only once. This experiment demonstrates measured grid alignment errors as a function 

of the number of processed channels. Unfortunately, a data set with more microarray channels 

was not available for this experiment. 
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Figure 7: A color image showing three grid masks obtained from channel 1 (red), channel 2 

(green) and both channels at the same time (blue) on the left side. The spatial misalignment 

between the grids obtained from both channels and (a) channel 1 (middle) or (b) channel 2 (right).  

Table 1: Misalignment error due to processing channels separately of together. 

Misalignment Channel 1 Channel 2 Channel 1 & 2 

Channel 1  0 9.3% 10.6% 

Channel 2 9.3% 0 9.8% 

Channel 1 & 2 10.6% 9.8% 0 

 

Second, we ran the grid alignment method on both channels with and without regularity 

requirements imposed on both grid rows and grid columns. The results are presented in Figure 8. 

This experiment demonstrates the disadvantage of template-based methods in comparison with 

data-driven methods. The better alignment in Figure 8 (left) than in Figure 8 (middle) is 

perceptually apparent and the total misalignment computed according to Equation 4 represents 

15.5%.  
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Figure 8: Grid alignment results without (left) and with (middle) regularity requirements imposed 

on both rows and columns, and the difference between the corresponding two grid masks (right). 

Next, we have conducted experiments to demonstrate an invariance of the proposed grid 

alignment algorithm to spot color and grid primitive shape. The invariance of the proposed 

algorithm to spot colors comes from the fact that the horizontal and vertical edge features are 

color independent. Figure 9 shows that the alignment results are identical for images with two 

simulated spot colors. Observing the grid line colors can lead to a quick visual comparison of the 

results. The yellow lines in each direction denote the highest confidence lines (maximum score) 

and the green lines denote the lowest confidence lines (minimum score above Accept). Any other 

line is shown as red.  

  

Figure 9: Black (left) and white (right) spot colors do not change the result of a grid alignment.  

The invariance to grid primitive shape is demonstrated with two examples of 2D arrays in 

Figure 10. These examples of grid shape primitives other than spots are composed of blurred 

squares and triangles where the triangles vary in their orientation in addition to irregular grid 

locations. The overlaid line results in Figure 10 illustrate an additional capability of the proposed 

algorithm. 
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Figure 10: Grid alignment results for square (left) and triangular (right) grid primitives. 

Additional capabilities were tested using multiple sub-arrays and rotated 2D arrays. 

Results obtained from measured and synthetic images are shown in Figure 11 and Figure 12. Any 

image with multiple sub-arrays was partitioned based on N2FindGridRow and N2FindGridCol 

input parameters and then optimized with respect to the parameters described in Section 3.2. 

Measured image in Figure 11 was obtained from a publicly accessible web site at http://stat-

www.berkeley.edu/users/terry/zarray/Html/begin.html and the grid alignment results show the 

capability of processing multiple sub-arrays in one image.  

Synthetic images in Figure 12 were used to verify the angular optimization functionality 

of the proposed algorithm. The verification test consisted of comparisons of correct angular 

values for single and multiple grids with estimated angular values given a range of acceptable 

angles (minimum and maximum angular values). We did not detect any angular errors for 

synthetic images. Nonetheless, one should be aware that there is some amount of spatial 

alignment inaccuracy in the results for rotated arrays in comparison with the arrays that are not 

rotated. This inaccuracy comes from rounding pixel locations during any rotation and hence 

offsetting spot locations.  
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Figure 11: Measured microarray image with four sub-arrays (left) and the result of grid alignment 

(middle) overlaid on the color enhanced measured image to show the grid alignment. High-

resolution view of the top left grid and its grid alignment result (right) demonstrate perceptual 

quality of the alignment.  

  

 

Figure 12: An example of a synthetic image with a rotated 2D array (upper left) by 5 degrees 

clockwise and the results of alignment for the case of one array (upper right) or multiple sub-

arrays (bottom). 
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4.2 Evaluations of Alignment Method 

As in many experimental studies, one would like to evaluate robustness and performance 

of the proposed method. Although there is an abundance of microarray images, there has not been 

any established data set to perform robustness evaluations. We have approached this problem by 

simulating microarray images (similar to the work of Balagurunathan et al.,[25]) with some 

variations observed in measured imagery. In this section, we simulated (a) varying spot size 

(radius), (b) blurred spots, (c) downsampled spots and (d) missing spots with the goal to test the 

automatic grid alignment capability1.  

A set of images with 2D arrays of spots was generated by detecting a grid in one of the 

measured microarray images (see Figure 3) and forming a mask image with estimated spot 

locations. The radii of spots in a series of mask images varied from 2 to 9 pixels inside of a grid 

cell with the dimensions along rows from [17, 22] and along columns from [18, 24]. These mask 

images simulate spatial variations found in measured microarray images but do not simulate 

intensity variations other than signal and background values. Four simulated images with radii 

equal to 2, 5, 9 and 12 are shown in Figure 13 and their corresponding alignment results are 

presented in Figure 14. We compared grid lines reported for every simulated image and there was 

no misalignment error as long as the spots were contained inside of each grid cell (R<8). Once 

the neighboring grid cells contained overlapping spots, we have observed alignment inaccuracy. 

An overlap less than about 28% of grid dimensions leads to a small inaccuracy, for instance, 0.5 

pixel line offset for the image with spot radius equal to 9 pixels. However, any larger overlap will 

cause the algorithm to fail because the background regions in the corners of grid cells will be 

considered as a 2D array while the signal area will be viewed as a homogeneous background. 

This is demonstrated in Figure 13 and Figure 14 for spots with their radius equal to 12. 

                                                 
1 We are not testing any spot segmentation, spot quality or spot information extraction functionality.   
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Figure 13: Simulated 2D arrays of spots with varying spot radii, R=2, 5, 9 and 12. 

  

  

Figure 14: The grid alignment results for the images in Figure 13. 

Another set of simulated images was formed to test an impact of blurred spots on 

the algorithm performance. Figure 15 shows a simulated image and the corresponding 
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grid alignment result. While signal blur is present in scanned digital images to some 

degree, the blur is also introduced when images are down-sampled for computational 

efficiency purposes. Apparently, any signal blur will decrease the signal contrast and 

increase the edge transition length between the signal and its background. From the grid 

alignment standpoint, smaller contrast means less discrimination power in the score 

function (max minus min range) and wider edge transition means larger spatial errors in 

determining grid lines (broader local minima in score function). These two facts can be 

seen from the score function plots in Figure 15. For the simulated array in Figure 15 (spot 

radius is 5) and varying amount of signal blur introduced by a low-pass filter with kernel 

values in [3,13], the total misalignment errors according to the Equation 4 are within the 

range [14.22%, 22.09%]. The alignment fails for images blurred with a low-pass kernel 

larger than 14. 

    

  

Figure 15: A simulated 2D array of spots (upper left) after blurring the spots with a low-pass filter 

(kernel = 5). The resulting grid (upper right) and the corresponding horizontal score function 
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(lower left) used for finding horizontal lines. The horizontal score function (lower right) for 

another simulated image with more blur (kernel = 10).  

As it was stated before, image down-sampling will introduce not only signal blur but also 

reduction in spot size and possible partial overlap of spots in neighboring grid cells. These factors 

will impact spatial accuracy of the line detection. One can see visually the impact on spatial 

alignment accuracy in Figure 16. The spatial inaccuracy originates from the score functions due 

to spot overlaps and intensity blurs in down-sampled images, and these factors were investigated 

separately before.  However, the benefit of analyzing down-sampled images is the computational 

speed summarized in Table 2. Table 2 illustrates a tradeoff between the misalignment error 

computed according to Equation 4 and the approximated execution time on a DELL PC with x86 

processor. The time was approximated by averaging real time instead of CPU time since the code 

is written in Java that does not support CPU time measurements. Although the error for the case 

with no down-sampling might seem too high (6.4%), it is caused by a circular shape of the array 

primitive overlaid on a square image grid. Thus, a rectangular shape would lead to more accurate 

alignment results from an image-processing standpoint. Another observation can be made about 

the tradeoff by viewing Table 3. The numerical values in Table 3 suggest that the benefit of 

computational speedup is inversely proportional to the misalignment error albeit we cannot 

generalize this result because of the small number of simulations. 

Table 2:  Experimental results showing a tradeoff between the misalignment error computed 

according to Equation 4 and an approximated execution time for an image of size 479x460 and 

the run-time parameters Kernel = 2, Sensitivity = 0, MinAngle = MaxAngle = 0. 

DownSamp Parameter 1 2 3 

Misalignment Error 6.4% 14.6% 21.3% 

Execution Time 175ms 65ms 45ms 
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Table 3: The misalignment and error ratios of down-sampled cases with respect to the case with 

no down-sampling. 

Compared Cases of 

DownSamp 

1 versus 2 2 versus 3 

Inverse Error Ratio 2.28 1.46 

Time Ratio 2.69 1.44 

 

      

Figure 16: The results obtained without any down-sampling (left, DownSamp=1), and with 

down-sampling by a factor of 2 (middle) and 3 (right).  

It is well known that in a measured microarray image, spots are missing quite often due 

to a variety of reasons [14], for example, printing error or low expression level. As in every data-

driven approach, if there is no signal to support the presence of a grid then the proposed data-

driven algorithm fails. In reality, it is very rare that an entire row or column would not have a 

single spot. If there would be obviously no information about lines in such rows or columns 

without spots, then this situation could be remedied by an editing tool that would allow the grid 

alignment quality inspector to insert a missing line. We have investigated more realistic scenarios 

when a few spots are missing in each line. Figure 17 shows a simulated image with a varying 

number of spots in each line. The plot in Figure 17 (right) illustrates a robustness related issue 

due to the lack of spots. Smaller number of spots in a line means less discrimination power in the 

score function. This agrees with our intuition that a grid alignment of 2D arrays with small 
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number of spots in a line will be less robust to missing spots than an alignment of 2D arrays with 

large number of spots.  

   

Figure 17: A simulated 2D array of spots (left) with varying number of spots in each row and 

column. The resulting grid (middle) and the corresponding horizontal score function (right) used 

for finding horizontal lines.  

In general, all simulated variations can be present simultaneously in a microarray image. A 

decomposition of spot variation types revealed individual error contributions due to each 

variation.  

 

5 SUMMARY 

 

We have presented a novel data-driven grid alignment algorithm that (1) detects 

irregularly row- and column-spaced spots in a 2D array, (2) is independent of spot color and spot 

size, (3) localizes a grid of other primitive shapes than the spot shapes, (4) performs grid 

alignment on any number of image channels, (5) reduces the number of free parameters to 

minimum by data driven optimization of most algorithmic parameters and (6) has a built-in speed 

versus accuracy tradeoff mechanism to accommodate user’s requirements on performance time 

and accuracy of the results. The 2D array processing, parameter optimization and processing of 

multiple grids were described in this work.  
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In the experimental part of this paper we demonstrated capabilities of the proposed grid 

alignment algorithm and evaluated its robustness and performance on a set of synthetic images. 

Among the capabilities, we have shown (1) grid alignment accuracy as a function of the number 

of channels, (2) inaccuracy of template-based methods in comparison with the proposed data-

driven method, (3) alignment of 2D arrays with color and shape varying grid primitives, (4) 

alignment of multiple sub-arrays and (5) alignment of rotated sub-arrays. In the evaluation part, 

we have focused on the robustness and performance criteria, such as, grid alignment accuracy as 

a function of (1) spot radius, (2) spot blur, (3) down-sampling parameters and (4) missing spots.  

In future, we would like to address other robustness issues including (1) misaligned spots 

in one line, (2) removal of background clutter, e.g., textual and bar code annotation on a slide (see 

Figure 1 right) and (3) alignment accuracy as a function of grid shape primitive. 
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