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ABSTRACT 

While hyperspectral data are very rich in information, processing the 

hyperspectral data poses several challenges regarding computational requirements, 

information redundancy removal, relevant information identification, and modeling 

accuracy. In this paper we present a new methodology for combining unsupervised and 

supervised methods under classification accuracy and computational requirement 

constraints that is designed to perform hyperspectral band (wavelength range) selection 

and statistical modeling method selection. The band and method selections are utilized 

for prediction of continuous ground variables using airborne hyperspectral measurements. 

The novelty of the proposed work is in combining strengths of unsupervised and 

supervised band selection methods to build a computationally efficient and accurate band 

selection system. The unsupervised methods are used to rank hyperspectral bands while 

the accuracy of the predictions of supervised methods are used to score those rankings. 

We conducted experiments with seven unsupervised and three supervised methods. The 

list of unsupervised methods includes information entropy, first and second spectral 

derivative, spatial contrast, spectral ratio, correlation and principal component analysis 

ranking combined with regression, regression tree and instance based supervised 

methods. These methods were applied to a data set that relates ground measurements of 
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soil electrical conductivity with airborne hyperspectral image values. The outcomes of 

our analysis led to a conclusion that the optimum number of bands in this domain is the 

top 4 to 8 bands obtained by the entropy unsupervised method followed by the regression 

tree supervised method evaluation. Although the proposed band selection approach is 

demonstrated with a data set from the precision agriculture domain, it applies in other 

hyperspectral application domains. 

1 INTRODUCTION 

Recent development of advanced hyperspectral sensors has enabled better class 

discrimination of objects due to a higher spectral resolution than one could achieve with 

standard electro-optical (EO) and infrared (IR) sensors. Hyperspectral sensors generate 

imagery that captures surface and sub-surface properties of objects, e.g., 1-2 mm depth in 

fine textured soils and 1-2 cm in coarse sands (Lee, 1978), at a fine spectral resolution, 

e.g., 10 nm using AVIRIS data (Campbell, 1996), and provide non-invasive and non-

intrusive reflectance measurements. Hyperspectral image analysis has been applied in 

several GIS application areas (Campbell, 1996; Miller and Han, 1999) including 

environmental monitoring (Czillag et al., 1993; Yamagata, 1996; Warner et al., 1999; 

Merenyi et al., 2000), sensor design (Wiersma and Landgrebe, 1980; Price, 1994), 

geological exploration (Hughes, 1968; Benediktsson, et al., 1995; Merenyi et al., 1996), 

agriculture (Gopalapillai and Tian, 1999), forestry (Pu and Gong, 2000), security (Healey 

and Slater, 1999), cartography and military (Jia and Richards, 1994; Withagen, 2001). 

Common problems in the area of hyperspectral analysis involving data relevancy include 

optimal selections of wavelength, number of bands, and spatial and spectral resolution 

(Wiersma and Landgrebe, 1980; Price, 1994; Jasani and Stein, 2002). Additional issues 
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include the modeling issues of scene, sensor and processor contributions to the measured 

hyperspectral values (Warner et al., 1999), finding appropriate classification methods 

(Benediktsson, et al., 1995), and identifying underlying mathematical models (Hughes, 

1968).  Every problem formulation is usually also associated with multiple application 

constraints. For example, communication bandwidth, data storage, discrimination or 

classification accuracy, minimum signal-to-noise ratio, sensor and data acquisition cost 

must be addressed. 

In almost all application areas, the basic goal of hyperspectral image analysis is to 

classify or discriminate objects. Driven by classification or discrimination accuracy, one 

would expect that, as the number of hyperspectral bands increases, the accuracy of 

classification should also increase. Nonetheless, this is not the case in a model-based 

analysis (Hughes, 1968; Benediktsson, et al., 1995). Redundancy in data can cause 

convergence instability of models. Furthermore, variations due to noise in redundant data 

propagate through a classification or discrimination model. The same is true of spectral 

information that has no relation to the feature being classified in the underlying 

mathematical model. Such information is the same as noise to any statistical model, even 

if it is unique and accurate. Thus, processing a large number of hyperspectral bands can 

result in higher classification inaccuracy than processing a subset of relevant bands 

without redundancy. In addition, computational requirements for processing large 

hyperspectral data sets might be prohibitive and a method for selecting a data subset is 

therefore sought. Although a method for band selection leads to data compression, we 

would like to emphasize that the performance objective of data compression is based on 
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data size (communication bandwidth), which is different from classification or 

discrimination accuracy.  

In this work, we will address the issue of hyperspectral band and method selection 

using unsupervised and supervised methods driven by classification accuracy and 

computational cost. The problem is formulated as follows: Given N unsupervised band 

selection methods and M supervised classification methods, how would one obtain the 

optimal number of bands and the best performing pair of methods that maximize 

classification accuracy and minimize computational requirements? This formulation is a 

variant of the problem definition in (Swain and Davis, 1978, Chapter 3-8) and has been 

researched for a single band selection method in the previous work (Jia and Richards, 

1994; Merenyi et al., 1996; Fung et al., 1999; Warner et al., 1999; Witthagen, 2001; 

Shettigara et al., 2002). While previous work has evaluated individual methods, for 

example, stepwise discriminant analysis in (Fung et al., 1999), maximum likelihood 

classification in (Jia and Richards, 1994) spatial autocorrelation analysis in (Warner et 

al., 1999), or principal component analysis (PCA) jointly with artificial neural network 

(ANN) analysis in (Pu and Gong, 2000), our formulation is more general by optimizing 

not only over all methods but also over all combinations of supervised and unsupervised 

methods. Our reasoning for doing so is based on the no-free-lunch (NFL) theorem (Duda 

et al., 2001, pp. 454), which states that no single supervised method is superior over all 

problem domains; methods can only be superior for particular data sets. As we assume no 

prior knowledge of the underlying structure of the data, and there is no universally 

accepted ‘best’ supervised method by the NFL theorem, we experiment over a range of 

methods and implementations to find which is superior for hyperspectral data. To limit 
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the computational complexity of trying all 
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supervised method, where nb is the number of bands, we deploy a set of unsupervised 

methods to trim the search space to include only the bands that the various unsupervised 

methods respectively deem most informative and least redundant. We exclude from the 

problem, however, any formation of new features such as creating eigenvectors (principle 

component analysis), averaging adjacent bands, or searching for basis functions in a 

subspace of data intrinsic dimensionality (Bruske and Merenyi, 1999) because otherwise 

the type of feature formation would be another degree of freedom for the proposed 

analysis and the search space would become computationally prohibitive. The outcome is 

expected to answer basic questions about which wavelength ranges should be used given 

a hyperspectral image and a specific application. The research objective of this paper is to 

investigate a methodology for combining unsupervised and supervised methods under 

classification accuracy and computational requirement constraints that can provide the 

answers to the band selection questions described above. 

Next in Section 2 is the methodology for evaluating band selection methods. In 

Section 3 we present an overview of both unsupervised and supervised band selection 

methods. Experimental results and discussion of the results are presented in Section 4. In 

Section 5 we summarize our work and address future directions. 

2 EVALUATION METHODOLOGY 

The tradeoff between accuracy and computational requirements is related to the choice of 

bands and classification methods. Thus, there is a need for a methodology for choosing 

hyperspectral bands that provide sufficient, but not redundant, information to 

classification or prediction algorithms using a practical amount of computational 
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resources.  We can use unsupervised methods to compute rank ordered lists of bands in a 

computationally efficient way thereby pre-filtering bands based on their redundancy and 

information content. Because direct comparisons of scores obtained by unsupervised 

methods are not valid due to different score scales, we use the predictive accuracy of 

supervised methods that use the top ranked bands from the unsupervised methods to 

evaluate both the quality of the top ranked bands and, indirectly, the quality of the 

unsupervised methods. Furthermore, supervised methods can be applied to a variable 

number of top ranked bands obtained from unsupervised methods. The trend of model 

errors as a function of the processed number of ranked bands will demonstrate local (or 

global) minima that will identify the optimal number of bands S maximizing model 

accuracy. Lastly, the problem of selecting a supervised method is addressed by choosing 

the method that forms the most accurate model with respect to the training data.  

To evaluate a supervised method given a set of bands and control parameters, 

cross-validation is used (Duda et al., 2001). The process of n-fold cross-validation 

involves splitting the data set into n non-overlapping, exhaustive subsets, and then 

building n models, one for each subset being withheld from training. Averaging the error 

calculated for each withheld set then scores each method. The error is defined as the 

difference between the actual values and predicted values of the set’s respective model. 

This assigned error is a function not only of the method and data set, but also on any 

control parameters of the method. To account for this, we performed an optimization of 

the control parameters for each combination of top ranked band sets and supervised 

methods. In our study, the error assigned to a set of bands was based on the mean 

absolute error of the test cases using 12-fold cross-validation. Appropriate models were 
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tried with 300 different randomly selected control parameter sets at each band set 

evaluation.  The control parameter set with the best performance using 8-fold cross-

validation was then used to compute the final 12-fold cross-validation error (the smaller 

value of n=8 required less computation for this step). Once the model error is computed 

for band count varying from 1 to N, where N is the maximum number of bands, we 

evaluate a discrimination measure (DM) as defined below in order to establish the quality 

of the optimal number of bands S that maximizes the model accuracy. 

( ) ( ) ( ) ( )DM Error S Error S Error S Error S= − + ∆ + − −∆                                         (1) 
In a nutshell, the process can be described as running unsupervised methods to 

rank the best bands followed by testing those band choices with the supervised methods 

to see which combinations are best for a particular application.  The same process should 

also reveal the optimal number of bands for the application in question. 

3 OVERVIEW OF BAND SELECTION METHODS 

Our methodology involves two types of band selection methods, unsupervised and 

supervised. Unsupervised methods order hyperspectral bands without any training and 

the methods are based on generic information evaluation approaches. Unsupervised 

methods are usually very fast and computationally efficient. These methods require very 

little or no hyperspectral image pre-processing. For instance, there is no need for image 

geo-referencing or registration using geographic referencing information, which might be 

labor-intensive operations. 

In contrast to unsupervised methods, supervised methods require training data in 

order to build an internal predictive model. A training data set is obtained via registration 

of calibrated hyperspectral imagery with ground measurements. Supervised methods are 

usually more computationally intensive than unsupervised methods due to an arbitrarily 
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high model complexity and an iterative nature of model formation. Another requirement 

of supervised methods is that the number of examples in a training set should be 

sufficiently larger than the number of attributes (bands, in this case). This requirement 

might be hard to meet as the number of hyperspectral bands grows and the collection of 

each ground measurement has an associated real-world cost. If taken alone, the 

unsupervised methods can, at best, be used to create classes by clustering of spectral 

values followed by assigning an average ground measurement for each cluster as the 

cluster label. Supervised methods therefore provide more accurate results than 

unsupervised methods. 

We developed seven unsupervised methods described in Section 3.1 including 

entropy, contrast, 1st and 2nd spectral derivative, ratio, correlation and principal 

component analysis ranking based algorithms. We chose three supervised methods 

described in Section 3.2 including regression, instance based (k-nearest neighbor) and 

regression tree algorithms because they represent methods for prediction of continuous 

input/output variables with global, local, and hybrid modeling approaches, as discussed in 

the following sections. A brief outline of all band selection methods used in this work 

follows.  

3.1 Unsupervised Band Selection Methods 

Information Entropy: This method is based on evaluating each band separately using the 

information entropy measure (Russ, 1999, Chapter 3) defined below. 

        
1

( ) lnm
i ii

H p pλ
=

= −∑                                                                                   (2) 

H is the entropy measure, p is the probability density function of reflectance values in a 

hyperspectral band and m is the number of distinct reflectance values. The probabilities 
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are estimated by computing a histogram of reflectance values.  Generally, if the entropy 

value H is high then the amount of information in the data is large. Thus, the bands are 

ranked in the ascending order from the band with the highest entropy value (large amount 

of information) to the band with the smallest entropy value (small amount of 

information). 

First Spectral Derivative: The bandwidth, or wavelength range, of each band is a 

variable in a hyperspectral sensor design (Price, 1994; Wiersma and Landgrebe, 1980). 

This method explores the bandwidth variable as a function of added information. It is 

apparent that if two adjacent bands do not differ greatly then the underlying geo-spatial 

property can be characterized with only one band. The mathematical description is shown 

below, where I represents the hyperspectral value, x is a spatial location and λ is the 

central wavelength. Thus, if D1 is equal to zero then one of the bands is redundant. In 

general, the adjacent bands that differ significantly should be retained, while similar 

adjacent bands can be reduced.         

1 1( ) ( , ) ( , )i i i
x

D I x I xλ λ λ += −∑                                                                            (3)  

Second Spectral Derivative: Similar to the first spectral derivative, this method explores 

the bandwidth variable in hyperspectral imagery as a function of added information. If 

three bands are adjacent, and the two outside bands can be used to predict the middle 

band through linear interpolation, then the band is redundant. The larger the deviation 

from a linear model, the higher the information value of the band. The mathematical 

description of this method is shown below, where D2 represents the measure of linear 

deviation, I is a hyperspectral value, x is a spatial location and λ is the central 

wavelength.                            



 10

2 1 1( ) ( , ) 2 ( , ) ( , )i i i i
x

D I x I x I xλ λ λ λ− += − +∑                                                        (4) 

Contrast Measure: This method is based on the assumption that each band could be used 

for classification purposes by itself. The usefulness of a band would be measured by a 

classification error achieved by using only one particular band and minimizing the error. 

In order to minimize a classification error, it is desirable to select bands that provide the 

highest amplitude discrimination (image contrast) among classes. If the class boundaries 

were known a priori then the measure would be computed as a sum of all contrast values 

along the boundaries. However, the class boundaries are unknown a priori in the 

unsupervised case. One can evaluate contrast at all spatial locations instead assuming that 

each class is defined as a homogeneous region (no texture variation within a class). The 

mathematical description of the contrast measure computation is shown below for a 

discrete case.                

1
( ) ( ) *m

i ii
ContrastM f E f fλ

=
= −∑                                                                    (5) 

f is the histogram (estimated probability density function) of all contrast values computed 

across one band by using Sobel edge detector (Russ, 1999, Chapter 4), E(f) is the sample 

mean of the histogram f and λ is the central wavelength. m is the number of distinct 

contrast values in a discrete case. The equation includes the contrast magnitude term and 

the term with the likelihood of contrast occurrence. In general, bands characterized by a 

large value of ContrastM are ranked higher (good class discrimination) than the bands 

with a small value of ContrastM.  

Spectral Ratio Measure: In many practical cases, band ratios are effective in revealing 

information about inverse relationship between spectral responses to the same 

phenomenon (e.g., living vegetation using the normalized difference vegetation index 
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(Campbell, 1996, Chapters 16.6 and 17.7). This method explores the band ratio quotients 

for ranking bands and identifies bands that differ just by a scaling factor. The larger the 

deviation from the average of ratios E(ratio) over the entire image, the higher the RatioM 

value of the band. The mathematical description of this method is shown below, where 

RatioM represents the measure, I is a hyperspectral value, x is a spatial location and λ is 

the central wavelength. 

      
1 1

( , ) ( , )( ) ( )
( , ) ( , )

i i
i

x i i

I x I xRatioM E
I x I x

λ λλ
λ λ+ +

= −∑                                                    (6) 

Correlation Measure: One of the standard measures of band similarity is normalized 

correlation (Duda et al., 2001). The normalized correlation metric is a statistical measure 

that performs well if a signal-to-noise ratio is large enough. This measure is also less 

sensitive to local mismatches since it is based on a global statistical match. The 

correlation based band ordering computes the normalized correlation measure for all 

adjacent pairs of bands similar to the spatial autocorrelation method (Warner et al., 1999) 

applied to all ratios of pairs of image bands. The mathematical description of the 

normalized correlation measure is shown below, where CorM represents the measure, I is 

a hyperspectral value, x is a spatial location and λ is the central wavelength. E denotes an 

expected value and σ  is a standard deviation. 

      1 1

1

( ( )* ( )) ( ( ))* ( ( ))( )
( ( ))* ( ( ))

i i i i
i

i i

E I I E I E ICorM
I I

λ λ λ λλ
σ λ σ λ

+ +

+

−
=                                     (7) 

After selecting the first least correlated band based on all adjacent bands, the subsequent 

bands are chosen as the least correlated bands with the previously selected bands.  This 

type of ranking is based on mathematical analysis of Jia and Richards, 1994, where 

spectrally adjacent blocks of correlated bands are represented in a selected subset. 
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Principal Component Analysis Ranking (PCAr): Principal component analysis has been 

used very frequently for band selection in the past (Campbell, 1996, pp. 289). The 

method transforms a multidimensional space to one of an equivalent number of 

dimensions where the first dimension contains the most variability in the data, the second 

the second most, and so on. The process of creating this space gives two sets of outputs. 

The first is a set of values that indicate the amount of variability each of the new 

dimensions in the new space represents, which are also known as eigenvalues (ε). The 

second is a set of vectors of coefficients, one vector for each new dimension, that define 

the mapping function from the original coordinates to the coordinate value of a particular 

new dimension. The mapping function is the sum of the original coordinate values of a 

data point weighted by these coefficients. As a result, the eigenvalue indicates the amount 

of information in a new dimension and the coefficients indicate the influence of the 

original dimensions on the new dimension. Our PCA based ranking system (PCAr) 

makes use of these two facts by scoring the bands (the “original” dimensions in the above 

discussion) as follows.  

        ∑=
j

ijji cPCAr ελ )(                                                                                (8) 

λi is the central wavelength, εj is the eigenvalue for the jth principal component, and cij is 

the mapping coefficient of the ith   central wavelength in the jth principal component. As 

the procedure for computing the eigenvalues and coefficients is both complex and 

available in most data analysis texts (Duda, et al, 2001), it is omitted. 

3.2 Supervised Prediction Methods 

Using the proposed approach requires choosing classification methods according 

to the type of input (here, hyperspectral) and output (predicted) variables.  In general, any 
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of these variables can be either continuous or discrete (also commonly referred to as 

numeric and categorical, or scalar and nominal). In this application all supervised 

methods predict a continuous variable (soil electrical conductivity) using all continuous 

inputs (values representing hyperspectral measurements).  

Regression: The regression method is based on a multivariate regression (Gill et al., 

1991; Han and Kamber, 2001) that is used for predicting a single continuous variable Y 

given multiple continuous input variables{ }nXX ...1 . The model building process can be 

described as follows.  Given a set of training examples T, find the set of coefficients 

{ }nβββ ...0=  that gives the minimum value of g(T),  where 

                
2)(min)( ∑

∈

′−=
Te

ee YYTg                                                                                                         (9) 

Ye is the observed output variable of a training example e and 

                e
nn

ee
e XXXY ββββ ++++=′ …22110                                                                                 (10) 

eY ′  is therefore the predicted value for Ye given values for { }e
n

e XX ...1  which, in this case, 

are reflectance values at varying wavelengths for the training example e. The problem as 

stated can be solved numerically using well-known matrix algebra techniques. Further 

details for finding { }nβββ ...0=  are therefore omitted for the sake of brevity.  

Instance Based Method: The instance based method uses inverse Euclidean distance 

weighting of the k-nearest neighbors to predict any number of continuous variables 

(Witten and Frank, 2000; Han and Kamber, 2001). To predict a value Y ′  of the example 

being evaluated e, the k points in the training data set with the minimum distance (see Eq. 

(11)) to the point e over the spectral dimensions { }nXX ...1  are found.  
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The weighted average of the observed Y values of these k closest training points is then 

computed where the weighting factor is based on the inverse of the distance from each of 

the k points to the point e according to Eq. (12). Furthermore, the weighting factor is 

raised to the power w. Altering the value of w therefore influences the relationship 

between the impact of a training point on the final prediction and that training point’s 

distance to the point being evaluated. The user must set the values of the control 

parameters k and w. In our study, these parameters were selected using the optimization 

procedure described in Section 2.. 
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Regression Tree: A regression tree is a decision tree that is modified to make continuous 

valued predictions (Breiman et al., 1984). They are akin to binary search trees where the 

attribute used in the path-determining comparison changes from node to node. The leaves 

then contain a distinct regression model used to make the final prediction.   

I(λi)>=p1 

I(λj)<p1 I(λj)>=p2

I(λi)<p1
P1 

P2 

Regression
Model

Regression
Model  

Figure 1: A simple regression tree where spectral values determine the path and the 
leaves contain regression models. 
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To evaluate (or test) an example using a regression tree, the tree is traversed, starting at 

the root, by first comparing the reflectance value at a single wavelength requested by the 

node and compared to the split-point (in Fig. 2, the P values). Particular wavelengths may 

be used by several nodes or none at all.  If the reflectance value of the example at the 

appropriate wavelength is less than the split point, the left branch is taken, if greater than 

or equal to the split-point, the right. This splitting procedure based on reflectance values 

continues until a tree leaf is encountered, at which time the prediction can be made based 

on data in the leaf. 

 To build a model, one must select what bands and what reflectance values for 

those bands are necessary to split the examples into sets that have similar target variables. 

To do this, a greedy approach is employed based on minimization of the target variable’s 

variance (defined in Eq. (13)). More precisely, at every node, find central wavelength λ 

and corresponding split point p such that the average variance of the targets of the two 

portions of the data set s after being split is minimized. This average variance is weighted 

based on how many training examples take the left or right branch, respectively (see Eq. 

(13)). 
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where { }peeexamplesnl ≤= λ: , { }peeexamplesnr >= λ: and the variance of the 

variable Y, in the set of examples s is given by 

∑
=
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To find the values of λ and p, the algorithm only tries the mean of the reflectance values 

at each wavelength and selects the (λ, p) combination according to Eq. (13). Future 

experiments may deploy a more comprehensive search of optimal values of (λ , p). 

 The algorithm halts when one of two criteria is met. The first is that the number of 

examples that evaluate to a node falls below m, the minimum allowed examples per node. 

The other is that the improvement (reduction) in variance that would be obtained by 

doing the best possible split is below some improvement threshold, t. In either case, the 

node at which the halting criteria are met is marked as a leaf and a regression model is 

built on the training examples that evaluate to that node. Both t and m are control 

parameters which are optimized via the procedure from Section 2.. 

3.3 Expected Trends 
Assuming that each unsupervised method sorts the bands based on band 

redundancy in ascending order, our expectation is to see the following trends in the 

resulting function (see Figure 2). First, the regression-based supervised method is using a 

global modeling approach where very few bands (insufficient information) or too many 

bands (redundant information) will have a negative impact on the model accuracy. Thus, 

we expected the trend of a parabola with one global minimum. Second, the instance-

based method exploits local information and adding more bands will either decrease an 

error or preserve it constant. The expected trend is a down-sloped staircase curve with 

several plateau intervals. The beginning of each plateau interval can be considered as a 

local minimum for selecting the optimal number of bands (see crosses in Figure 2). 

Lastly, the regression tree based method uses a hybrid approach from a standpoint of 

local versus global information. It is expected to demonstrate a trend of the instance-
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based method for a small number of processed bands (band count) and a trend of the 

regression-based method for a large number of processed bands.  

 

Figure 2: Expected trends based on the models of three supervised methods. 

4 EXPERIMENTAL RESULTS 

The proposed methods for band selection were applied to hyperspectral data 

collected for precision farming applications. Detailed information about the hyperspectral 

data, experimental results from unsupervised and supervised band selection methods, and 

interpretation of the obtained results are provided next. 

4.1 Hyperspectral Data 

The hyperspectral image data used in this work were collected from an aerial 

platform with a Regional Data Assembly Centers Sensor (RDACS), model hyperspectral 

(H-3), which is a 120-channel prism-grading, push-broom sensor developed by NASA. 

Each image has 2500 rows, 640 columns, and 120 bands per pixel. The 120 bands 

correspond to the visible and infrared range of 471 to 828 nm, recorded at a spectral 

resolution of 3 nm. The motivation for choosing the wavelength range came from the 

agricultural application domain where the 400-900 nm wavelength range responds to 
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plant characteristics very well (Swain and Davis, 1978, Chapters 2-2 and 5-2) and has 

been used for vegetation sensing in the past (Gopalapillai and Tian, 1999). By selecting 

this wavelength range, the data analysis avoids issues related to water absorption bands 

(1400 nm and 1900 nm). In the particular range we compensated only for low reflectance 

in the blue (450 nm) and red (650 nm) wavelength sub-ranges due to the two chlorophyll 

absorption bands (Campbell, 1996, Chapter 17.4) during reflectance calibration. While 

our experiments dealt with images of bare soil, we used a sensor that is optimal for 

vegetation observation as that is what is likely to be available in agricultural applications 

(for the reasons given above). Indeed, the experimental data set used in this study came 

from a series of images taken over the entire growing season that were collected to study 

the relationship between hyperspectral information and both bare soil properties before 

crops had emerged and crop properties when they were present. For application specific 

interpretations of data, each band index of the hyperspectral image was converted to the 

band central wavelength by applying the following formula: 471 3*( 1) [ ]b b nmλ = + − .  

The images were collected from altitudes in the range of 1200 m to 4000 m on 

April 26, 2000. The spatial resolution of the images is approximately 1-m for the 

processed Gvillo field located near the city of Columbia in the central part of Missouri. 

The images were pre-processed to correct for geometrical distortions, calibrated for 

sensor noise and illumination, and geo-registered (Swain and Davis, 1978, Chapter 2-7). 

However, the images were not pre-processed for any atmospheric corrections (Campbell, 

1994, (Chapter 10-4)]. An image of the Gvillo site is shown in Figure 3. 
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Figure 3: A hyperspectral image (left) obtained in April 26, 2000 at 4000 m altitude and 

the Gvillo site of interest (middle) with associated grid-based locations of ground 

measurements (right). The display shows combined bands with central wavelengths 471 

nm, 660 nm and 828 nm. 

Ground measurements of several variables (e.g., conductivity, elevation, organic 

matter, phosphorous content) were collected by the Illinois Laboratory Agricultural 

Remote Sensing (ILARS) using the Veris profiler 3000 made by Veris Technologies, 

Salina, KS, and the data were provided by Dr. Tian. The hyperspectral images provided 

by Spectral Visions, a non-profit research organization funded by the NASA Commercial 

Remote Sensing Program, were geo-registered with the ground measurements by Dr. 

Gopalapillai (Department of Biological and Agricultural Engineering, University of 

Arkansas) and both ground and aerial measurements formed a training data set covering 

about 19,000 m^2 of the Gvillo field. We used the training data with 190 examples from 

the hyperspectral imagery collected at 4000 m altitude for evaluating the band selection 

methods. The training data contained these hyperspectral values and associated ground 

values of soil electrical conductivity. The field coverage on the date of data collection 

was bare soil. 
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Among all ground variables, we anticipated to find relationships between 

hyperspectral values (reflected part of the electro-magnetic (EM) waves in the 

wavelength range [471nm, 828 nm]) and surface/field characteristics that change electric 

and magnetic properties according to the EM theory of wave propagation (Balanis, 1989, 

Chapter 5). Thus, electrical conductivity appeared as the number one candidate among 

other variables. We verified with a simple linear correlation method that there exists a 

significant enough correlation (around 0.5) between the conductivity variable and 

hyperspectral values (190 conductivity values were correlated with 190 hyperspectral 

values for each band to obtain 120 correlation values averaging near 0.5). The 

conductivity values ranged from [22.4262, 52.66] miliSiemens per meter with the sample 

mean equal to 36.10836 and the standard deviation equal to 5.212215. Based on the 

known classification of soil properties (Veris Technologies, 2003) as a function of 

conductivity with approximate class conductivity ranges of sand (0,2], silt [2, 20] and 

clay [10, 1000], we concluded that the ground soil consisted of silt and clay soil types. 

Soil electrical conductivity is an important characteristic considered for crop yield 

prediction in the agricultural application. Electrical conductivity indirectly characterizes 

several important soil characteristics including soil texture (the relative amount of sand-

silt-clay) and salinity, which affects the crops ability to acquire water.  

4.2 Results from Unsupervised Band Selection Methods 

The results of seven unsupervised band selection methods are shown in Table 1. 

The processed hyperspectral data came from the training set without using any ground 

measurements (only 120 hyperspectral band values). The unsupervised methods were 
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implemented in Java and documented for interested users of hyperspectral analysis tools 

(Bajcsy, 2002).   

Table 1: Top 15 bands selected by seven unsupervised band selection methods and 

reported by their central wavelength in nm. 

Order Entropy Contrast 1st Der. 2nd Der. Ratio Correl. PCAr

1 741 741 741 741 741 741 588

2 795 594 738 744 498 486 591

3 822 597 669 738 744 828 582

4 669 600 747 669 492 588 585

5 615 603 666 747 501 471 594

6 825 606 639 672 747 825 579

7 819 609 498 642 669 603 636

8 636 612 792 639 639 822 648

9 627 615 744 699 486 579 600

10 654 591 696 501 489 819 642

11 612 639 699 498 738 474 597

12 666 666 750 795 522 600 603

13 645 669 801 471 483 816 576

14 828 570 642 801 513 501 645

15 651 585 636 666 636 813 630

In this experimental evaluation, the contrast based unsupervised method utilized 

the fact that the hyperspectral examples extracted from a hyperspectral image were 

spatially ordered along a geo-spatial line (row). Based on the contrast measure definition 

in Section 3.1, computing an amplitude contrast using Sobel edge detector requires 

spatially adjacent amplitude locations. This requirement was satisfied by selecting 

hyperspectral values at the locations of grid-based ground measurements (see Figure 3 
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right). Spatial adjacency is not an issue in the case a hyperspectral image since it is well 

defined by an underlying image grid. We have not encountered any other problem during 

this part of the experiment. 

The unsupervised methods ran on a Dell PC, Dimension 4100 with a single Intel 

Pentium III processor and Windows 2000 operating system. The order of unsupervised 

methods based on their algorithmic computationally efficiency was (1) 1st spectral 

derivative, (2) 2nd spectral derivative, (3) ratio, (4) contrast, (5) entropy, (6) correlation, 

and (7) PCAr based methods. The maximum time for processing 190 examples with 120 

bands did not exceed 2 seconds. 

4.3 Results from Supervised Band Selection Methods 

We processed seven rank-ordered lists of bands obtained using unsupervised 

methods by three supervised methods. Figures 5, 6 and 7 were formed by computing an 

error value for two, four, six, …120 top bands from each rank-ordered list using 

Regression (Fig. 5), Instance based (Fig. 6) or Regression tree (Fig. 7) supervised 

algorithms with the ground measurement of soil electrical conductivity.  
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Figure 4: Results obtained from the regression based supervised method using rank 

ordered bands from unsupervised methods.  
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Figure 5: Results obtained from the instance based supervised method using rank ordered 

bands from unsupervised methods. 
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Figure 6: Results obtained from the regression tree based supervised method using rank 

ordered bands from unsupervised methods. 
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We also processed lists of bands obtained by random and incremental ranking 

along the spectral axis. The incremental ranking sub-divides spectral bands into the 

ordered set {b64, b1, b120, b32, b96, b16, b112, b48, …}. The result for the 

incrementally created set and the average result for seven randomly generated band sets 

are shown in Figure 7. These results were generated as a baseline for quantitative 

comparison with the results from Figures 5, 6, and 7. Based on the comparative summary 

provided in Table 2, we concluded that the results obtained from the best unsupervised 

ranking always lead to smaller prediction error, smaller or equal number of optimal bands 

S and higher discrimination DM (see Eq. (1)) of S for regression and instance based 

methods. 
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Figure 7: Baseline results obtained for randomly (RAND) and incrementally (INC) 

selected bands with regression tree (RT), instance based (IB) and regression (R) based 

supervised methods. 

Table 2: Comparison of the results from baseline random (RAND) and incremental (INC) 

rankings with the best results from unsupervised (BEST UNSUP) rankings.  
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RAND INC BEST UNSUP  
Error S DM Error S DM Error S DM 

Regression 2.0405 12 0.4489 2.0422 8 0.0418 1.9940 6 0.4912 
Instance 
Based 

2.7044 24 0.01523 2.5548 4 1.3544 2.5543 4 2.0101 

Regression 
Tree 

1.9713 6 0.5107 1.9332 6 0.1186 1.8953 6 0.2727 

 
In all these experimental evaluations, we had to overcome several limitations of 

the supervised algorithms. For example, the multivariate regression must have at least as 

many examples as there are bands (attributes) in order for the linear algebra routines it 

makes use of to be valid.  Furthermore, as the number of bands approaches the number of 

examples, the algorithm begins to perform poorly even if it does not fail. Our regression 

tree algorithm was modified so that it would return a mean model if the regression were 

to fail. The so-called mean model simply predicts the average output value of the training 

examples for any testing case, ignoring all input (spectral) information. The regression 

tree model also gave similar results of rapid accuracy decline when the leaves of a 

regression tree contained very few examples relative to the number of bands being 

evaluated. As a consequence of Eq. (10), the number of examples in each leaf has to be 

greater than or equal to the number of unknowns, which is equal to the number of bands. 

This accuracy decline can be observed in Figure 6. Because the mean model is more 

accurate than regression models built with inadequate data, we see the trend around 80 

bands where the regression models fail and are replaced by mean models that give static 

accuracy. There were no limitations in the case of instance-based algorithm. 

The supervised methods, also implemented in Java in a data flow programming 

environment called D2K (Welge et al., 2000), ran on a Sun Ultra- Enterprise machine 

with 16 processors and Solaris 5.7 operating system. Processing the results of all seven 

unsupervised methods with an increment of two bands {2, 4, 6,…, 120} took 
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approximately 22 hours. If we disregard the fact that the evaluations of large numbers of 

bands took longer than the evaluations with smaller numbers of bands then the average 

time of each evaluation was around 3.14 minutes. All supervised methods ran in parallel. 

The most computationally efficient method is regression-based method, followed by the 

regression tree and finally the instance based method. It is also important to mention that 

the majority of the time was spent finding the optimal control parameters for the 

regression tree and instance based algorithms. 

4.4 Interpretation of Results 

In this experiment, the goal was to select a combination of unsupervised and 

supervised methods, the optimal number of bands, and band indices subject to model 

accuracy and computational requirement considerations.  Following the methodology in 

Section 2, the results of supervised methods and the trends in Figures 5, 6 and 7 were 

investigated.  

We concluded that the trends for all seven unsupervised methods followed the 

predicted trends in Figure 2 for supervised regression (Figure 4) and regression tree 

(Figure 6) based evaluations quite well. Some trend deviation is observed in the 

regression tree evaluation for band count variable larger that 80 due to the sample size 

limitation in tree leaves as it was explained in the previous section. This deviation could 

be removed by increasing the number of training examples. The trends of the instance 

based algorithm observed in Figure 5 are present for contrast, ratio and PCA ranking 

based-methods but are less pronounced for other unsupervised methods. For other than 

these three methods, the error values reach a value near-global minimum after the band 

count variable becomes 4-6 and then decrease by only a very small amount (an 
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approximate error gradient for curves at band count larger than 6 is less than 0.002). 

Thus, this particular trend is a case shown in Figure 2 with only one plateau and can be 

explained by optimal band ranking of the other four methods.  

By analyzing the results in Figures 5, 6 and 7, the minimum error per figure was 

achieved by (a) the entropy based unsupervised method evaluated with the regression-

based supervised method (error = 1.9940 in Fig. 5), (b) the correlation based method with 

instance-based supervised method (error = 2.5543 in Fig. 6) and (c) the entropy based 

unsupervised method with regression tree based supervised method (error = 1.8953 in 

Fig. 7). The number of bands S (the smallest S) at the local minima of error was reported 

in Table 2 for each pair of unsupervised and supervised methods. The optimal numbers of 

bands S that were reported the most often were 4 and 6. The highest discrimination 

measure DM defined in Eq.(1), with 2∆ = , for the optimal number of bands S was 

achieved by instance based supervised method and 1st derivative based unsupervised 

method for S equal 4. We used the discrimination measure DM to quantify our 

confidence in finding the true error minimum and the corresponding S. While higher DM 

means higher confidence, the absolute values of DM can be compared only for the same 

supervised method since the range of DM values depends on the error range and can 

theoretically reach twice the difference between maximum and minimum error values. 

Table 3: The lowest optimal number of bands S and its discrimination score DM 

determined for each combination of unsupervised and supervised methods based on the 

local minima of error as a function of processed band count.  

Entropy Contrast 1st Der. 2nd Der. Ratio Correl. PCAr  

S DM S DM S DM S DM S DM S DM S DM 
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Regression 6 0.4912 8 0.5643 8 0.2060 8 0.2022 10 0.0427 10 0.0531 14 0.0184 

Instance 
based 

6 0.0579 14 0.0225 4 3.1283 4 0.5445 10 0.1121 4 2.0101 4 0.0255 

Regression 
tree 

6 0.2727 14 0.1425 8 0.1838 6 0.4696 6 0.3962 4 2.8082 16 0.0232 

In summary, our recommendation is to select approximately the top 4 to 8 bands 

with the entropy based unsupervised method followed by a classification model using the 

regression tree based supervised method. The recommendation is based on computing a 

weighted average of optimal bands per each supervised method according to the equation 

N
supervised_method N 1

1

1 ( )* ( )
( ) i

i

S DM i S i
DM i =

=

= ∑
∑

, where N is the number of unsupervised 

methods, and leading to Regression 7.568S = , Instance Based 4.172S =  and Regression Tree 5.098S = . 

The most frequently selected bands (by more than two methods) are 498, 501, 600, 603, 

636, 639, 642, 666, 669, 738, 741, 744 and 747 nm, as it is shown in Figure 8.  
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Figure 8: Histogram of top 15 ranked bands by all unsupervised methods according to 

Table 1. 
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5 SUMMARY 

In this paper we have presented a new methodology for combining unsupervised 

and supervised methods under classification accuracy and computational requirement 

constraints that was used for selecting hyperspectral bands and classification methods. 

The novelty of the work is in combining strengths of unsupervised and supervised band 

selection methods to build a computationally efficient and accurate band selection 

system. We have developed and combined seven unsupervised and three supervised 

methods to test the proposed methodology. The methodology was applied to the 

prediction problem between airborne hyperspectral measurements and ground soil 

electrical conductivity measurements. While analyzing soil electrical conductivity is 

important for soil characterization and crop yield prediction, the airborne hyperspectral 

data collection represents more economical and efficient way of soil information 

gathering than ground data measurements. We conducted a study based on the 

experimental data that demonstrated the process of obtaining the optimal number of 

bands, band central wavelengths and the selection of classification methods under 

classification accuracy and computational requirement constraints. The study concluded 

that there are about 4-8 most informative bands for the electrical conductivity variable 

including 7 bands in the red spectrum (600, 603, 636, 639, 642, 666 and 669 nm), 4 

bands in the near infrared spectrum (738, 741, 744 and 747 nm) and 2 bands close to the 

border of blue and green spectra (498 and 501 nm). We believe that this result is in 

accordance with our empirical observations (soils with ferrites would appear reddish), as 

well as electromagnetic theory (phenomenological and atomic models according to 

Balanis, 1989, Section 2.8.3) that derive dependency of electric conductivity as a function 
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of wavelength from Maxwell equations. The proposed band selection methodology is 

also applicable to other application domains requiring hyperspectral data analysis. 

In the future, we would like to improve the unsupervised ranking procedure with 

ratio measures by iteratively selecting and removing the best bands and then selecting the 

subsequent best bands from the remaining set  (Jia and Richards, 1994). We would also 

like to include in our analysis other linear, e.g., correlation, and non-linear, e.g., artificial 

neural network (Kavzoglu and Mather, 2000), supervised methods, and evaluate their 

performance within our band selection framework. Another direction to pursue is finding 

the true optimal band set through an exhaustive search over a data set verified by a 

domain expert. We also plan to investigate the problem of combining all constraints into 

a more rigorously formulated mathematical framework. The tradeoffs between 

classification accuracy versus computational requirements are currently loosely 

integrated and a rigorous quantitative analysis might be useful. 
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