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Abstract 

In this report we present an overview of the GIS processing steps for predictive modeling 
from raster and point data and we describe the software tools developed for this purpose. 
The GIS processing steps include data georeferencing, visualization, feature extraction 
from raster data over locations defined by point data, and predictive modeling of (a) 
cross-feature dependencies by a correlation matrix and (b) spatial dependencies by a 
kriging technique. The described work leverages from our previous development of 
georeferencing capabilities and is driven by agricultural and environmental applications. 
This document outlines the theory and implementation of each processing step and serves 
as a guideline for other scientists trying to work with geo-registered raster and point data.  

1. Introduction 

In this work, we address the problems of pre-processing raster and point data information 
followed by two types of modeling techniques. The problem of pre-processing includes 
georeferencing raster and point data, visualization of both data types, and feature 
extraction from raster data over locations defined by point data. The problem of variable 
prediction or modeling is understood as the search for a mapping/relationship/function 
for predicting one or more features from a set of multi-variate measurements. In our 
work, the prediction mapping forms a model for either (1) cross-feature dependency by 
focusing only on generic features or (2) spatial/temporal dependency by processing a pair 
of spatial/temporal coordinates and associated feature information. Variable prediction 
problems can be found in many GIS applications, such as, hydrology, water quality 
research, environmental science, socio-economics modeling or atmospheric science.  
 
A prediction of the cross-feature dependency typically does not consider any spatial or 
temporal information and its goal is to establish relationships among physical variables 
(or more precisely observations) of the same phenomenon. A few examples of such 
prediction modeling techniques would include cross-correlation matrices, least-square fit 
techniques with a built-in model, neural networks, or regression trees.  
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A prediction of the spatial/temporal dependency is used for modeling one or more 
variables at any spatial location and time from a spatially and/or temporally sparse set of 
measurements. This type of prediction usually involves spatial and/or temporal 
interpolation or extrapolation and its goal is to build a dense set of values while 
minimizing the cost of performing dense measurements. The underlying assumption for 
spatial and temporal predictions is the fact that most physical entities change their value 
continuously and can be approximated reasonably well with interpolation and 
extrapolation models. We would list the least-square polynomial, bilinear or B-spline 
models as the most popular interpolation and extrapolation prediction models. 
 
From an application viewpoint, accurately predicting a variable, whether from another 
variable or from a spatially sparse set of its own values, is an incredibly useful ability.  
Hydrologists use spatial prediction techniques to model underground water sources [1].  
Mining companies hope to accurately predict concentrations of a particular mineral when 
given only a small number of sample points [9].  The application drivers for our research 
and development came from agricultural and environmental domains while studying crop 
yield and water quality models. 
 
The motivation for our modeling work comes from the fact that there exist feature-rich 
and feature-sparse data spaces, as well as, spatially/temporally dense and 
spatially/temporally sparse spaces. It is our objective to maximize our information gain in 
any given data space and hence we are looking for various modeling techniques to 
achieve our objective. In addition, the need for combining raster and point data in both 
agricultural and environmental application domains was eminent and the availability of 
flexible software tools is scarce.  
 
In our work, we assume that in a feature-rich data space, we have a large number of 
known features throughout the space (e.g. elevation, average rainfall, etc.), as well as a 
variable (known only in some portion of the space) that we would like to predict.  To be 
more specific, we assume that the variable we are interested in is specified in a DBF file 
[8].  The other known features are to be extracted from any number of image (raster) files 
from within a software package called I2K [4].  Thus, for modeling cross-feature 
dependencies, we implemented a software tool that allows users to perform feature 
extraction, insertion of data to the DBF file, computation and display of the correlation 
matrix of any number of variables.   
 
Our work in a feature-sparse data space is based on a form of ordinary kriging [5]. We 
use only the given data of a variable to predict its value at other spatial points.  
Specifically, we use our given data set to compute the method-of-moments variogram 
estimator (or 'classical' variogram estimator).  Next, we fit an isotropic model variogram 
to our estimator by a least squares approximation.  Finally, we calculate our weights for 
the prediction of a particular value by solving a standard linear system using our modeled 
variogram.   
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2. Current Solutions 

The ArcGIS software package contains a flexible Kriging tool.  The Spatial Analyst tool 
used inside of the ArcMap program [2] gives the user the ability to analyze their point 
data in DBF form and form a raster image containing predictions of an attribute in an area 
around the point data.  The dialog is shown in Figure 1. 

 

 

 
The available semivariogram models are as follows:  spherical, circular, exponential, 
Gaussian, and linear.  The “Z value field” drop-down list allows the user to choose which 
column of the DBF file contains the attribute they would like to predict.  As we explain in 
Section 4.2.2, it was a difficult task to find a proper semivariogram for the particular data 
set coming from our agricultural application domain and, indeed, the semivariogram 
options here do not provide the model we eventually used.  Thus, the results obtained 
from this tool were consistent with our earlier kriging attempts.  Namely, the prediction 
raster images produce by Spatial Analyst contained large negative numbers, which should 
not be possible in this dataset with a statistically valid semivariogram.  In Section 4.2, we 
detail our approach and give references to the work that motivated our choice of 
semivariogram. 
 

Figure 1: ArcMap Dialog. 
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3. Preprocessing of Raster and Point Data Information for 
Modeling 

The dialog box shown is the interface by which to access all of the developed software.  
A brief overview of its components follows: 
 
Load DBF - This is the first button the user must click to begin using the tool.  An ‘Open 
File’ dialog box launches where the user can select the DBF file for analysis. 
 
ShowDBF – The loaded DBF file is read into a standard table structure used in [6].  
Clicking this button launches a TableViewer, allowing the user to inspect the DBF. 
 
ShowGeoPts – This button allows the user to view any locations indicated in the DBF file 
that are within the spatial boundaries of the image in the main frame.   
 
Extract – Here the user can extract the value of every pixel in the main image, which 
coincides with a point in the loaded DBF file. 
 
Insert2DBF – This will insert a column into the DBF table containing the values of the 
extracted feature.   
 
SaveDBF – A button to write out the modified DBF. 
 
ListFeatures – Lists the column number and title of every column in the DBF 
 
Correlate – This button brings up a dialog where the user can choose which features 
(columns of the DBF file) to correlate.  After the features are chosen, a coefficient matrix 
is calculated. 
 
ShowCorrelate – Here the results of the correlation calculation are displayed. 
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3.1 Georeferencing Raster and Point Data 

This pre-processing step is based on two assumptions. First, an image (raster data) is 
loaded with its georeferencing information. Our current software supports several 
geographic projections, including the Lambert Azimuthal Equal Area projection and the 
Universal Transverse Mercator projections for all zones in the Northern Hemisphere. The 
loading and display of images can be achieved using the main frame of the I2K 
application (see I2K documentation at [4]). Second, a table of point data in a DBF file 
format (version 4.0) with multiple rows and columns has to contain (a) column heading 
with the two required fields defined as “LATITUDE” and “ LONGITUDE”, and (b) two 
columns with latitude and longitude information in each row, where all other columns 
correspond to measured variables at that particular geographic location. We do not 
support currently files with six columns defining latitude and longitude in degree, 
minutes and seconds. The loading of tabular data in a DBF file format can be executed 
from the GeoPoint dialog shown in Figure 2 by selecting “Load DBF”. After loading the 
DBF file, the user can see either the tabular information by clicking “Show DBF” or the 
overlaid geographic location of all points by clicking “ShowGeoPts”.  The spatial 
information about each point in latitude and longitude is converted to pixel information in 
row and column by using the GeoConvert object.  This object, through calls to its 

Figure 2:GeoPoint Dialog 
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LatLng2ColumnRow method, allows us to associate a pixel location with each point in 
our data set.   
 

3.2 Feature Extraction 

The goal of this pre-processing step is to perform feature extraction from raster data over 
locations defined by point data. Extracting a feature from a given image is accomplished 
through the use of the “Extract” button. For each point in the loaded DBF file, the raster 
value of its associated pixel is copied to an array.  This array is inserted into the tabular 
information by clicking “Insert2DBF”.  Finally, the extracted information can be saved 
into a new DBF file by clicking “SaveDBF”. The user can then load a different image, 
and repeat the process. This ability is particularly useful for extracting features from 
multiple images. Additionally, the user can see if the loaded DBF points represent 
locations seen within the image by clicking the “Show GeoPts” button.   
 

4. Multi-Dimensional Multi-Variate Modeling  

4.1 Modeling Cross-Feature Dependencies 

We have implemented a computation of the correlation matrix as defined in [7], Pattern 
classification, p 614. The correlation value for every pair of features indicates the 
statistical dependency of features and can be utilized for predicting the outcome of 
complex relationships. For example, if two features are not correlated (in other words the 
two features (random variables) are statistically independent) then the expected value E 
of the product of two features could be computed by multiplying the expected values of 
each feature 1 2 1 2( * ) ( )* ( )v v v vΕ = Ε Ε . The expected value and standard deviation would 
be used as statistical descriptors of each feature. 
 
By clicking on the Correlate button in GeoPoint Dialog (see Figure 2), the user can 
calculate the correlation coefficient for any number of features. It is assumed that the 
features are all scalar values.  As of yet, the tool does not support any method for dealing 
with nominal features.   
 
The correlation coefficients for the selected features appear in the text area of the 
GeoPoint Dialog below the buttons.  Additionally, the coefficient matrix is formed and 
displayed for the user.  This matrix follows the convention of a bright color entry 
indicating high correlation and increasingly dark colors for increasingly uncorrelated 
features.  This correlation matrix is obviously symmetric, so only the lower diagonal is 
shown.  See Section 5.1 for figures and examples. 
 

4.2 Modeling Spatial Dependencies 

 
In this section, we focus on modeling spatial dependencies by a kriging technique. The 
problem of spatial modeling can be described as a spatial prediction problem from a 
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given set of 2D points and their variable values inside a geographic domain.  The goal is 
to use these data points to predict the value of the variable throughout the relevant spatial 
domain.   
 
Kriging is a topic covered in many textbooks [5], and our description of kriging gives 
only a brief summary of the concepts relevant for this work.  The most important tool is 
the variogram, or more correctly the semivariogram, denoted as γ.  This function takes a 
vector value representing the difference between two locations in the data, usually called 
a 'lag.'  Its value for a given lag represents how much the feature can be expected to vary 
over that lag distance and direction.  This is a tremendously powerful tool, as a data set 
may vary much in one direction (say the north-south direction) and hardly at all in 
another (say the east-west direction).  A semivariogram that takes into account these 
differences in direction is called an anisotropic semivariogram.  Another type of 
semivariogram, called an isotropic semivariogram, is a function of only the magnitude of 
the lag distance.  As one would imagine, this is significantly easier to implement.  For 
this work, we restricted our search for semivariograms to several isotropic models. 
 
In order to perform ordinary kriging, we had to first make decisions on the type of 
variogram we wanted to use and how we were going to calculate this variogram to use in 
our predictions.  In the interest of simplicity, we chose a variogram that is isotropic.  That 
is, we process only the magnitude of the lag vector, but not its direction.  This means our 
variogram is a scalar function of a scalar variable, which makes its estimation much 
easier.   
 

4.2.1 Variogram Estimation 

 
The notation for this section follows closely with [5].  The variable we are trying to 
predict is collectively denoted as Z.  Our set of locations is },...,{ 1 nss .  The value of our 
variable at a location si is Z(si).  The prediction of our variable at a location s0 is denoted 
as ),( 0sZp . 
 
 
Method-of Moments Estimator 
 
To begin to understand the characteristics of the variogram associated with a data set, it is 
a general practice to estimate it by some means.  The approach taken in this work is to 
use the standard method-of-moments variogram estimator, also known as the 'classical' 
variogram estimator.  The formula for the 'classical' variogram estimator is: 
 

2

( )

1ˆ2 ( ) ( ( ) ( )) ,
( )

k
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N h
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where the set of pairs, ( )kN h , is defined as: 
 

{ }njihssDistsshN kjijik ,...,1,:),(:),()( ==≡  
 
Throughout, we will usually denote )(ˆˆ kk hγγ =  as the estimator at a distance kh .  From a 
mathematical viewpoint, the set ( )kN h is well defined.  However, from a computational 
viewpoint, the size of the set ( )kN h for a given kh  may be quite small or even zero unless 
we process extremely large data sets.  Thus, we must use reasonable values of kh  and a 
small tolerance t∆ before computing parameters of the classical estimator. The issue 
related to populating the set ( )kN h  for a chosen kh  is described next. 
 
Populating ( )kN h : To find reasonable values of kh , we iterate through some portion of 
our data and record the distances between a particular point and several of its neighbors.  
The location of each of the points is given in latitude and longitude.  If the distances are 

computed for all point pairs then this computation requires ( 1)
2

n n⋅ −  distance 

calculations. For the distance metric, we briefly investigated the feasibility of 
approximating the distances between any two points in meters using a geodetic ellipsoid, 
but it seemed to work well to just use the standard Euclidean distance.  Obviously, the 
Earth is not a Euclidean surface so we introduce some error here, but the approximation 
is certainly valid for sufficiently small areas in which we are usually interested. We find 
the minimum and maximum distance between points in the sample of data and use those 
values as the minimum and maximum values of h for our estimator.  By deciding on a 
rather arbitrary number of total points for the estimator (in this case, K=10), we were able 
to choose the rest of the values of kh  for our estimator and then calculate each kγ .   
 
To populate ( )kN h  for each of our values of kh , we could not insist that the distances 
between two points be exactly kh .  The distance between any two points was stored as a 
double precision floating point number, so it is unlikely that this distance would agree 
with any value of distance kh  up to its highest precision.  Thus, a tolerance value should 
be chosen and refined as needed.  There is no concrete rule for the size of each set 

( )kN h , which we denote as P.  Following the advice of Cressie [5], our desire is to have 
30≥P  pairs of points such that the distance between each pair falls within the tolerance 

for each value of kh .   

( )i j k tDist s s h− − < ∆         

First, we compute distances for a small subset of points (perhaps 10-25% of the data) and 
then compute the minimum and maximum distance values. Second, we partition the 
interval of [min, max] into K-1 sub-intervals as it is illustrated in Figure 3. The partition 
should, in general, be evenly spaced throughout [min, max], but fine-tuning may be 
necessary to achieve the desired number of pairs for each lag distance. 
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4.2.2 Selecting and Fitting the Model 

Given a set of estimated values 10,,...,1),(ˆˆ === KKkhkk γγ , the next step is to choose 
a continuous model variogram and fit the model's parameters to the estimated values.   
There is great freedom of choice for this step, and the success of the kriging process is 
mostly determined by the choice of semivariogram model.  A semivariogram must have 
certain properties to be statistically valid (see [5] for details).  For example, a valid 
semivariogram must always give nonnegative answers for positive values of a lag 
distance h.    For our proof-of-concept kriging model (see Section 5.3), we chose a 
simplified power model for the semivariogram: 
 

α
γ hah 2)( =  

 
By design, this semivariogram will always be positive. 
 

4.2.3 'Linear' Least Squares Fitting to Power Model  

 
To fit data to our model, we seek values for parameters a and α that predict 

10,,...,1),(ˆˆ === KKkhkk γγ  as close as possible.  We choose to fit our model in a 
linear least squares fashion, which we can do with some manipulation of our original 
formula.  Note that for some h, we would like our model to be such that  
 

α
γ hah 2)(ˆ =  

)ln())(ˆln( 2 α
γ hah =  

)ln()ln(2))(ˆln( hah αγ +=  

Figure 3: Finding K distance values. 
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Writing this equation in vector form yields: 
 

[ ] ))(ˆln(
)ln(2

1)ln( h
a

h γ
α

=







⋅  

 
Now, we find values for α and 2ln(a) that minimize the two-norm of the residual of the 
following linear system: 
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Using QR factorization, we solve for this α and 2ln(a).  This is our valid semivariogram 
used to perform our predictions. 
 

4.2.4 Predicting a Value 

 
Setting up Linear System 
 
Following closely with Cressie [5], Sec. 3.2, we seek to solve the following linear 
system: 

0γλ =Γ  
 
where Γ, γ0, and λ are as follows (recalling that s0 is our value to predict): 
 
Γ :  an nn× matrix whose (ith, jth) entry is )( ji ss −γ  

γ0 :  an 1×n column vector whose ith entry is )( 0 iss −γ  
λ :  an 1×n column vector where each entry is a weight to be used in the final prediction 
 
Solving Linear System 

 
For some data sets, it may be too costly to use the entire data set in the prediction 

process (i.e. n = |Z(s)|).  For such cases, it may be more computationally feasible to 
sample the data throughout the space and use this sample to form the matrix Γ (and 
corresponding vectors γ0, λ).  After solving the system, we end up with a column vector 
of weights, λ.  We multiply the transpose of this vector by a column vector of our n 
points (however they are chosen) as follows: 
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This yields the prediction, ),( 0sZp . 
 
 
 

5. Experimental Results 

 

5.1 Input Data 

For this work, we used a DBF file containing data on approximately 53,000 
latitude/longitude points on a farm in central Illinois.  The data was collected by 
harvesting machines equipped with GPS systems in August 2003.  As the machines drove 
through the fields, they were able to record, among other things, the volume of crop 
harvested at that location (hereafter referred to as ‘yield’). We are interested mostly in the 
yield data, which was only taken for about 18,000 of the 53,000 points.   
 
We also worked with a portion of the National Elevation Dataset for the state of Illinois.  
Specifically, we selected a sub-area of this data that includes the land from where the 
yield data was collected.  We used previously developed tools in I2K to verify that we 
sub-area did indeed represent the same land area as in the DBF file.   
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5.2 Modeling Cross-Feature Dependency Using Correlation 

As a simple example, we show the correlation matrix for several numerical features of 
the DBF file as well as the extracted elevation data, which we add to the DBF.  The user 
follows the process described in Section 3, and chooses to correlate the features of 
latitude, longitude, moisture, dry_yield, and elevation (the extracted field).  Clicking the 
Show GeoPts button shows our location in the image (Figure 5). 
 
 

 

 
 

 

 

Figure 4: Visualization of shape information (left) and overlaid shape and raster data 
(right). The raster data is a digital elevation map from USGS. 

Figure 5: Visualization of selected point data for extracting DEM features. 

Figure 6: Extracted DEM features are inserted into the original tabular information under 
the column heading “column_13”. 
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Figure 7 demonstrates nicely how the user can immediately discern any relationship 
between the selected features.  Numerical values are also printed in the dialog box (see 
Figure 2).  The significant correlation calculations are as follows:  corr(moisture, 
dry_yield)= 0.056441895399660734,  corr(moisture, elevation)= 0.09670441284740094, 
and corr(elevation, dry_yield)= 0.011187583878695641, corr(longitude, moisture) =  
0.24967296821023308, corr(longitude, elevation) = 0.4619475583873144, corr(latitude, 
elevation) =  0.44534181231501924.  The brighter colors in the lower left of our 
correlation matrix can be explained by the fact that the elevation would be somewhat 
correlated to position in a relatively flat farm field with a gentle slope.  Our conclusion is 
that none of the correlated features by themselves would be a good predictor for the yield 
data. 

5.3 Modeling Spatial Dependency Using Spatial Kriging 

Here we present a ‘proof-of-concept’ implementation of kriging using the yield 
data.  As in Section 4.2, we begin with the semivariogram estimator.  Based on our 
analysis for M=1000, P=30, and t = 5 * 10-6, the values of kh  were chosen were as 
follows: 
 

hk k = 1, …, 10 )(ˆˆ kk hγγ =  
h1 = .0002 234.633333333333 
h2 = .0008 863.233333333333 
h3 = .0014 1986.8 
h4 = .002 1304.56666666667 
h5 = .0025 3944.93333333333 
h6 = .003 10031.1666666667 

Figure 7: Correlation matrix for three selected variables. 
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h7 = .0035 16754.8666666667 
h8 = .004 19175.1 
h9 = .0045 16880.1 
h10 = .005 
 

18168.9333333333 

 
Using the techniques described in Section 4.2.1, we used the crop yield data to construct 
the classical semivariogram estimator, )(ˆ hγ , show in Figure 8: 

 
Figure 8 The classical semivariogram estimator for crop yield data 

 
 
It turned out to be difficult to choose a good model to fit this estimator.  For many of the 
models we tried, fitting the parameters to the data (using a least squares method) resulted 
in a variogram that did not obey one of essential properties of a variogram.  Specifically, 
we would often end up with a semivariogram that would give a negative value for 
extremely small values of h.  Using the model described in Section 4.2 solved these 
problems.  Actually, others have already suggested using this type of semivariogram for 
agriculture yield data.  Cressie [5] points readers to Whittle [10], but Whittle develops his 
covariance models initially in [11], using an isotropic model as well.                                                                 
 
As stated above, our data consists of nearly 18,000 separate locations and yield values, so 
it would be quite costly to solve a linear system of that size.  Further, it seems that the 
density of this data set greatly affected the conditioning of the linear system, making it 
nearly singular when nearly all of the data was used.  The sensitivity was so great that our 
linear solver was unable to provide a solution.  We eventually found that by using 600 of 
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the points distributed throughout our space (n = 600), the resulting linear system was 
well-conditioned and fairly cheap to solve. 
 
To test the functionality of the prediction method, we predicted the yield values for a few 
points already in our data set.  Thus, we could compare the actual values with what our 
prediction gave.  Here is a table of our arbitrarily chosen points, their actual yield values 
and the predicted values: 

 
Latitude Longitude Actual Yield Predicted Yield 

40.408634 89.074655 135 150.01 
40.413923 89.074691 147 128.85 
40411642 89.074255 180 158.48 
40.410427 89.075334 172 155.83 
40.411624 89.074609 180 161.18 

 
 
Our initial results indicate that the prediction method does indeed yield sensible values, 
but our model parameters might need to be adjusted to obtain better accuracy.   
 
 

6. Summary and Future Work 

We have developed the necessary infrastructure in I2K to support predictive modeling for 
both cross-feature dependent variables and spatially dependent variables.  Leveraging our 
early georeferencing work [3], I2K can now be a powerful tool for exploring the 
relationships among multiple types of spatial data.  Additionally, we have built a proof-
of-concept kriging tool that shows the potential for the software to predict unknown 
values of spatially dependent geographic data.   
 
With regard to the correlation analysis, the tools developed stop short of predicting the 
spatial variable based on the correlation results.  Further tools could be developed which 
make predictions based on highly correlated features.  In addition, we could incorporate 
domain knowledge of nominal features (vegetation type, for example) into the predicting 
process.  For the more statistical work, a more automated system of estimating and 
modeling the semivariogram will be needed to make the process easier for the user.  
However, we must first assess the accuracy of the prediction by a cross validation 
process. 
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