
Technical Report

December 8, 2004
David Clutter, clutter@ncsa.uiuc.edu
Peter Bajcsy, pbajcsy@ncsa.uiuc.edu

Automated Learning Group
National Center for Supercomputing Applications
605 East Springfield Avenue, Champaign, IL 61820

Storage and Retrieval Efficiency Evaluations of
Boundary Data Representations for LLS, TIGER
and DLG Data Structures.

Abstract

We present our theoretical comparisons and experimental evaluations of three boundary
data representations in terms of storage and information retrieval efficiency. We focus on
three boundary data representations, such as, location list data structure (LLS), digital
line graphs (DLGs) and topologically integrated geographic encoding and referencing
(TIGER) data organizations. These three boundary data representations are used
frequently in the GIS domain, and are known as ESRI Shapefiles (LLS), the SSURGO
DLG-3 soil files (DLG), and the U.S. Census Bureau 2000 TIGER/Line files (TIGER).

The motivation of our work came from the fact that while boundary data types are
preferred over raster data types when it comes to storing boundary information, there are
multiple memory storage schemes for boundary information. However, choosing the
storage scheme that minimizes memory requirements might have a detrimental impact on
boundary information retrieval efficiency. Thus, our objective is to evaluate
quantitatively the tradeoffs between storage and retrieval efficiency of multiple boundary
data representations for LLS, TIGER and DLG data structures. The outcomes of our
evaluations are useful for (a) institutional decisions about archiving and retrieving
geospatial boundary information, and (b) custom applications that perform processing of
large size, geospatial boundary data sets.

 Our storage and retrieval efficiency tradeoff evaluations are based on load time,
computer memory, and hard disk space requirements. The experimental measurements
are obtained with test data sets derived from the SSURGO DLG-3 soil files and the U.S.
Census Bureau 2000 TIGER/Line files. Based on our experiments, we concluded that
LLS files will provide the fastest boundary retrieval (40 times faster than TIGER and 2.5
times faster than DLG) at the price of file size (storage redundancy for LLS files is
between 70% and 180% in our experiments). DLG format offers a smaller file size, but is
less efficient for boundary retrieval, and TIGER format also offers a compact physical
representation, at the cost of more processing for boundary retrievals. We also
demonstrate quantitatively the correlation between data content and our evaluation
metrics, as well as the relationship between load time and number of loaded nodes. At the

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 2

end of this report, we add a few observations about other possible trade-off metrics that
might be considered for making institutional decisions.

1. Introduction

Boundary information is viewed as one type of vector information [1, Chapter 15].
Boundaries (or contours or outlines) are mathematically described as convex on non-
convex polygons. One boundary can be formed by a set of polygons, for instance, a donut
shape boundary. Each polygon consists of an ordered set of points or vertices. In most
GIS applications, points are georeferenced so that boundary information can be integrated
with raster information. GIS examples of boundary information would be parcels, eco-
regions, watersheds, soil regions, counties, Census tracts or U.S. postal zip codes.

In general, boundaries can be spatially related or can be spatially independent.
The spatially related boundaries can be either partially overlapping or totally overlapping,
such as, one contour being a subset of another set of boundaries. For example, watershed
and U.S. postal zip codes boundaries are spatially independent while the U.S. Census
Bureau tracts and blocks are spatially dependent in such a way that every tract is formed
by a set of blocks (see Figure 1). One can also find two sets of boundaries 1S and 2S , for
instance, eco-regions and watersheds, where the intersection of the boundaries is non-
zero. We can write the boundary relationships for two sets of boundaries 1S and 2S as
follows:

1 1 2 2 1 2

1 2

1 2

1 2 1 2

{ , ,...}; { , ,...}

0
i jS B p p S B p p

S S independent
S S partially overlapped
S S S S totally overlapped

= ∪ = = ∪ =

∩ =
∩ =∅
∩ = ⊂

where 1S and 2S are formed by boundaries B and each boundary consist of points p.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 3

Figure 1: Hierarchical structure of the U.S. Census Bureau territories.

 Given the variety of boundary information, researchers have developed numerous
file formats for storing boundary information. These file formats are designated in
general for storing any vector data. Vector data contain points, lines, arcs, polygons or
any combinations of these elements. Any vector data element can be represented in a
reference domain defined by a latitude/longitude, UTM or pixel coordinate system. The
challenge in storing vector data is to organize the data such that the positions and
geographic meanings of vector data elements are efficiently stored and easily extracted.

 Among all vector data representations in files, the following data structures have
been used frequently: location list data structure (LLS), point dictionary structure (PDS),
dual independent map encoding structure (DIME), chain file structure (CFS), digital line
graphs (DLGs) and topologically integrated geographic encoding and referencing
(TIGER) files. For detailed description of each data structure we refer a reader to [1].

The motivation of our work came from the fact that while boundary data types are
preferred over raster data types when it comes to storing boundary information, there are
multiple memory storage schemes for boundary information, as listed in the previous
paragraph. However, choosing the storage scheme that minimizes memory requirements
might have a detrimental impact on boundary information retrieval efficiency. Thus, our

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 4

objective is to evaluate quantitatively the tradeoffs between storage and retrieval
efficiency of multiple boundary data representations for LLS, TIGER and DLG data
structures. The outcomes of our evaluations are useful for (a) institutional decisions about
archiving and retrieving geospatial boundary information, and (b) custom applications
that perform processing of large size, geospatial boundary data sets.

In this work, we evaluate three boundary data representations for efficient boundary
information storage and retrieval. These three data representations include (1) Census
2000 TIGER/Line files defined by the U.S. Census Bureau and saved in topologically
integrated geographic encoding and referencing (TIGER) data structures, (2) shapefiles
defined by the Environmental Systems Research Institute (ESRI) and stored in location
list data structure (LLS) data structures, and (3) SSURGO DLG-3 soil boundaries
prepared by the United States Geological Survey (USGS) and stored in digital line graphs
(DLGs) data structures. We overview the three data file formats first. Next, we present
our experimental results, and pair-wise analysis of experimental results. Finally, we
summarize our work and add a few observations about other possible trade-off metrics
that might be considered for making institutional decisions.

2. SSURGO DLG-3 Soil Files

The Soil Survey Geographic (SSURGO) Digital Line Graphs (DLG) files provide
geographical information on the boundaries of soil types [9], [10], [11]. The SSURGO
data sets provide the highest spatial resolution of soil type information among the three
soil geographic data bases, such as, the Soil Survey Geographic (SSURGO) data base, the
State Soil Geographic (STATSGO) data base, and the National Soil Geographic
(NATSGO) data base.

2.1 File Format Description

2.1.1 DLG File Structure

The DLG file structure is designed to support all categories of spatial data that can be
represented on a map. Three distinct types of DLG are defined. Large-scale DLG data is
digitized from 1:24,000-scale USGS topographic quadrangles (SSURGO). Intermediate-
scale DLG data is digitized from 1:100,000-scale USGS quadrangles (STATSGO).
Small-scale DLG data is digitized from 1:2,000,000-scale sectional maps (NATSGO).
Furthermore, three levels of DLG data were defined in terms of the number of attributes.
It was found that the widest user community would be served by DLG Level 3 (DLG-3)
data, which allows for the highest resolution (SSURGO) and highest number of attributes
to be encoded (Level 3). The lesser levels of DLG encoding are unused. DLG-3 encodes
attributes using two codes: a major code and a minor code. Similar attributes share a
major code. The SSURGO DLG-3 soil database uses both the major code and minor
code to encode the primary key into a relational database to further describe an area.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 5

We gathered the SSURGO DLG-3 files for a few counties in Illinois from
http://www.ncgc.nrcs.usda.gov/branch/ssb/products/ssurgo/data/index.html, and
learned about the specification of these files. There are two files for each county, such as,
dlg.zip (digital line graph or DLG) and tab.zip (ASCII attribute data available in
Microsoft Access 97 or later template database). The files contain soil boundaries of
18,000 soil series recognized in the United States. For the integration purposes, we have
been exploring the following information from the DLG-3 documentation: (a) file
naming convention, (b) spatial resolution, (c) spatial accuracy, (d) geographic coordinate
system and (e) storage format. In terms of file naming convention, the dlg.zip file would
contain files with the following suffixes:

af - soil polygon DLG-3 file,

aa - soil polygon attribute file,

sf - special soil point and line DLG-3 file, and

sa - special soil point and line attribute file.

Regarding spatial resolution, soil survey is mapped at a scale ranging from 1:12,000 to
1:63,360. The SSURGO soil boundaries meet the accuracy standards for the USGS 7.5-
minute topographic quadrangles or the 1:12,000 or 1:24,000 orthophotoquads. Finally,
the storage format is Digital Line Graph optional format with the attribute table data
archived in ASCII table or INFORMIX table format.

2.1.2 DLG Georeferencing Information

In terms of a geographic coordinate system, coordinates are derived from the North
American Datum of 1983 reference system that is based upon the Geodetic Reference
System of 1980. DLG data are recorded in either the Universal Transverse Mercator
(UTM) system or are projected using the Albers Equal-Area Conic projection. SSURGO
DLG-3 data are normally reported in the UTM system. STATSGO DLG data are
reported using the Albers Equal-Area Conic projection.

2.1.3 DLG Data Description

DLG data are reported as nodes, lines, and areas. Lines are composed of a series of
nodes, and areas are composed of lists of lines (or optionally nodes). The composition of
an area or a line can be encoded either as a list of the nodes that make up the element, or
as a list of points. Due to this hierarchical structure, each element must be encoded with
a unique identifier.

A node is a coordinate on a map. Each node has an Easting value and a Northing
value in the UTM coordinate system. Nodes define the points of each line and are
encoded with (1) a unique identifier and (2) the coordinates that the node represents.
Nodes can also be encoded with attributes, if desired. Additionally, the DLG format
specification allows for a list of all lines that begin and end at a node to be encoded in the
record for a node. This is redundant information, however, for it is reflected in the line
records as well.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 6

Lines are a series of nodes. Each line is encoded with a unique identifier, as well
as its starting node and ending node. The coordinates that a line follows are also listed.
In addition, a line can be encoded with attributes.

An area is an enclosed section. Areas can be encoded as either a sequence of
lines or a sequence of nodes. When encoded as a sequence of lines, the area will contain
a list of the lines that the boundary of the area follows. This list contains the unique
identifier for each line; negative values signify that the points in the line should be
reversed. Islands within an area are delimited by a ‘0’ in the list of lines. Areas are
specified in a clockwise direction around the perimeter of the area, and islands are
specified in a counter-clockwise direction. In addition, an area can be encoded with
major and minor code pairs. When encoded as a sequence of nodes, the area will contain
a list of the nodes make up the boundary of the area.

2.1.4 Software Development for SSURGO DLG-3 Files

First, we implemented a loader for SSURGO DLG-3 files and added it to the list of other
GIS files supported by the NCSA I2K software package [5]. Next, we extended our 2D
visualization to support visualization SSURGO DLG-3 files. We can visualize multiple
georeferenced vector data structures (boundaries and sets of points) simultaneously.
Third, we develop a conversion function from SSURGO DLG-3 data structure to ESRI
Shapefile (LLS) data structure that was needed for tradeoff comparison purposes.

The details of boundary information retrieval from DLG-3 file format can be
described as follows. The DLG file format defines objects using a hierarchical structure.
The lowest objects in the hierarchy must be retrieved prior to higher objects in the
hierarchy. Thus, in order to retrieve an area, all lines that make up the area’s boundary
must be retrieved beforehand. Therefore, the DLG-3 loader in I2K will read all the
defined lines first. The lines are kept in a lookup table, and indexed by their unique
identifier for later use. The size of this structure is directly proportional to the number of
lines.

Next, the areas are retrieved by populating I2K defined data structures for
boundary information denoted a ShapeObject. In a ShapeObject, an area has a list of the
coordinates that make up its boundary. This list is dynamically constructed when reading
an area. Areas that share a boundary will have copies of the common coordinates. Once
all areas have been read and processed, the lookup table containing the lines can be safely
discarded. Finally, the coordinates for the areas are copied into a ShapeObject.

2.2 Theoretical Evaluation

Memory requirements: The DLG-3 optional format used in SSURGO soil databases
provides a compact physical representation of the boundaries of soil types over a
geographic area. There is little redundancy in a DLG-3 file. Each area is a list of lines
that do not cross. The lines must share the same endpoints in order to fully define an
area. Thus, the only redundant information is the endpoints of each line. The points of
adjacent polygons will be specified only once; in a line, or series of lines. The boundary

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 7

between adjacent, non-overlapping polygons is represented as the same series of line
identifiers in the file. In addition, representing all data in a fixed-length ASCII form
makes for smaller, highly compressible files. Abundant white space exists in DLG-3
files to maintain the fixed length. Typical compression algorithms will compress a series
of identical characters efficiently. Thus, when a DLG-3 file is subject to compression,
the white space will compress well.

Boundary information retrieval requirements: The boundary information retrieval from
DLG-3 file format can require significant processing resources. All boundary
coordinates are stored as ASCII characters in a DLG file. In order to use the polygons
specified in a file, each coordinate must be converted into a native numeric value. This
conversion can be quite costly, and takes approximately 27% of the time to load
SSURGO DLG-3 files in I2K.

3. Census 2000 TIGER/Line Files

The Census 2000 TIGER/Line Files provide geographical information on the boundaries
of counties, zip codes, voting districts, and a geographic hierarchy of census relevant
territories, e.g., census tracts that are composed of block groups, which are in turn
composed of blocks. It also contains information on roads, rivers, landmarks, airports,
etc, including both latitude/longitude coordinates and corresponding addresses [2]. A
detailed digital map of the United States, including the ability to look up addresses, could
therefore be created through processing of the TIGER/Line files.

3.1. File Format Description

Because the density of data in the TIGER/Line files comes at the price of a complex
encoding, extracting all available information from TIGER/Line files is a major task. In
this work, our focus is primarily on extracting boundary information of regions and hence
other available information in TIGER/Line files is not described here.

TIGER/Line files are based on an elaboration of the chain file structure (CFS) [1],
where the primary element of information is an edge. Each edge has a unique ID number
(TIGER/Line ID or TLID) and is defined by two end points. In addition, each edge then
has polygons associated with its left and right sides, which in turn are associated with a
county, zip code, census tract, etc. The edge is also associated with a set of shape points,
which provide the actual form an edge takes. The use of shape points allows for fewer
polygons to be stored.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 8

Figure 2: Illustration of the role of shape points.

To illustrate the role of shape points, imagine a winding river that is crossed by
two bridges a mile apart, and that the river is a county boundary and therefore of interest
to the user (see Figure 2). The erratic path of the river requires many points to define it,
but the regions on either side of it do not change from one point to the next, only when
the next bridge is reached. In this case, the two bridge/river intersections would be the
end points of an edge and the exact path of the river would be represented as shape
points. As a result, only one set of polygons (one on either side of the river) is necessary
to represent the boundary information of many small, shape defining edges of a
boundary.

This kind of vector representation has significant advantages over other methods
in terms of storage space. To illustrate this point, consider that many boundaries will
share the same border edges. These boundaries belong to not only neighboring regions of
the same type, but also to different kinds of regions in the geographic hierarchy. As a
result, storing the data contained in the TIGER/Line files in a basic location list data
structure (LLS) such as ESRI Shapefiles, where every boundary stores its own
latitude/longitude point, would introduce a significant amount of redundancy to an
already restrictively large data set.

In contrast to its apparent storage efficiency, the TIGER vector data
representation is very inefficient for boundary information retrieval and requires
extensive processing. From a retrieval standpoint, an efficient representation would
enable direct recovery of the entire boundary of a region as a list of consecutive points.
The conversion between the memory efficient (concise) and retrieval efficient forms of
the data is quite laborious in terms of both software development and computation time.

Another advantage of the TIGER/Line file representation is that each type of GIS
information is self-contained in a subset of files. As a result users can process only the
desired information by loading a selected subset of relevant files. For example, each
primary region (county) is fully represented by a maximum of 17 files. Therefore, the
landmark information is separate from the county boundary definition information, which
is separate from the street address information, etc. Those files that are relevant to the
boundary point extraction, and the attributes of those files that are of interest, are the
following:

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 9

• Record Type 1: Edge ID (TLID), Lat/Long of End Points

• Record Type 2: TLID, Shape Points

• Record Type I: TLID, Polygon ID Left, Polygon ID Right

• Record Type S: Polygon ID, Zip Code, County, Census Tract, Block Group, etc.

• Record Type P: Polygon ID, Internal Point (Lat/Long).

We denote this subset of files as “Census boundary records”.

As part of our description of the Census 2000 data, we would like to mention the
difference between the U.S. postal service code areas (or zip codes) and the Census 2000
zip code analog. The zip code information provided in the TIGER/Line files does not
give the actual boundaries of zip codes. They are instead Zip Code Tabulation Areas
(ZCTA's), which are the Census Bureau's best attempt at representing zip code
boundaries. This approximation is necessary because zip codes are not based on
geographic regions, but rather on postal routes. Zip codes are therefore collections of
points, not boundaries, and can be overlapping. For example, a large office building may
have its own zip code while all the buildings around it share another zip code. The U.S.
census bureau also made coverage of ZCTA boundaries contiguous, meaning that all of
the United States is assigned to a ZCTA. Bodies of water therefore have their own
ZCTA’s that are designated by a five-digit code ending in 'HH'. Furthermore, some
regions could not be appropriately defined as distinct ZCTA’s, and are designated by the
first three digits of the zip codes that the region's zip codes have in common and the
suffix 'XX'. In the current software implementation, all regions ending in 'HH' are
removed with the option of also removing those with 'XX'. The default is to remove those
with the 'XX'.

3.2 Theoretical Evaluation

This work extends our previous study about the tradeoffs between U.S. Census Bureau
TIGER and ESRI Shapefile data representations that are documented in [7].

4. ESRI Shapefiles

A shapefile is a special data file format that stores non-topological geometry and attribute
information for the spatial features in a data set. The geometry for a feature is stored as a
shape comprising a set of vector coordinates in a location list data structure (LLS).
Shapefiles can support point, line, and area features. Area features are represented as
closed loop polygons.

4.1 File Format Description

A shapefile must strictly conform to the ESRI (Environmental Systems Research
Institute) specifications [4]. It consists of a main file, an index file, and a dBASE table.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 10

The main file is a direct access, variable-record-length file in which each record
describes a shape with a list of its vertices. In the index file, each record contains the
offset of the corresponding main file record from the beginning of the main file. The
dBASE table contains feature attributes with one record per feature. The one-to-one
relationship between geometry and attributes is based on record number. Attribute
records in the dBASE file must be in the same order as records in the main file.

All file names adhere to the ESRI Shapefile 8.3 naming convention. The 8.3
naming convention restricts the name of a file to a maximum of 8 characters, followed by
a 3 letter file extension. The main file, the index file, and the dBASE file have the same
prefix. The suffix for the main file is ".shp". The suffix for the index file is ".shx". The
suffix for the dBASE table is ".dbf".

Examples:

1. main file: counties.shp

2. index file: counties.shx

3.DBASE table: counties.dbf

The implementation of shapefile loading, writing and visualization routines was
straight forward since the I2K ShapeObject data structure maps directly to the shapefile
file organization.

4.2 Theoretical Evaluation

There are numerous reasons for using ESRI Shapefiles. ESRI Shapefiles do not have the
processing overhead of a topological data structure such as a TIGER file. They have
advantages over other data sources, such as faster drawing speed and edit ability. ESRI
Shapefiles handle single features that overlap or are noncontiguous. They also typically
require less disk space and are easier to read and write. However, the drawbacks of ESRI
Shapefiles are in their storage inefficiency and poor scalability. We will quantify these
tradeoffs in the experimental section.

5. Experimental Evaluations

In this section, our goals are (a) to experimentally evaluate the tradeoffs between storage
and retrieval efficiency, and (b) to explain the tradeoffs by comparing fundamental
format differences. In order to perform experimental tradeoff evaluations, we used two
datasets including (1) the SSURGO soil boundaries for Madison County, IL, stored in
DLG-3 file format and (2) the U.S. Census Bureau boundaries of Illinois counties, zip
codes, census block and census tracts stored in TIGER/Line file format. The preparation
of these two data sets is outlined in Section 5.1. The results of all experiments are
provided in Sections 5.2 and include comparisons of DLG & LLS, and DLG & TIGER &
LLS. Sections 5.3 , 5.4 and 5.5 explain the pair-wise format comparisons based on the
experimental results.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 11

5.1 Data Preparation

It is apparent that the experimental evaluations will depend on the size of test
data. Ideally, one would like to show results as a function of input file size. However, the
practical difficulty arises when one is looking for those test data sets that contain identical
boundary information but are represented by LLS, TIGER and DLG files. We were not
able to find such files. An example problem in finding such files is provided in Appendix
B.

We explored the possibility of finding software tools that would convert vector
files from one file format to another so that we could create multiple test files with
identical boundary information stored in LLS, TIGER and DLG formats. We have
concluded that while LLS formats (ESRI Shapefiles) are supported by most GIS software
packages, there is a very limited support for DLG and TIGER file formats. This
corresponds to our assessment of the implementation complexity to support loading of
TIGER, DLG and LLS formats in this order from the most time consuming to the least
time consuming. The implementation effort usually doubles when both loading and
writing routines have to be supported.

Based on our findings about conversion tools and the availability of GIS software
packages at our institution, we created data sets by (1) implementing TIGER to LLS, and
DLG to LLS conversions, and (2) using ArcToolBox for LLS to DLG conversion. We
created several test data sets that are described next.

In the first experimental tradeoff evaluation, we used a file pair consisting of the
original DLG file (SSURGO soil boundaries) and the LLS file converted using I2K. This
file pair is denoted as the test data set #1.

In the second experimental tradeoff evaluation, we prepared a triplet of files
consisting of (a) the original TIGER files for the state of Illinois, (b) the LLS files
obtained by extracting the U.S. Census Bureau boundaries of counties, zip codes, census
block and census tracts from the TIGER files and converting them by using our software
implementation, and (c) the DLG file converted from the already obtained LLS file using
ArcToolBox. This triplet of files provides a test data set for fair performance evaluations
in terms of “Total Load Time” and Load RAM Required” parameters. However, this test
data set cannot be used for performance evaluations in terms of “Hard Disk” because the
TIGER files include all boundary types (including voting districts, and so on), of which
four were extracted to LLS and DLG file formats. This file triplet is denoted as the test
data set #2.

We expanded the second experimental tradeoff evaluations in Section 5.2.2 by
partitioning the test data set #2. We used sub-sets of the original TIGER files for the state
of Illinois in order to vary the number of nodes. In order to explore load time dependency
on the number of nodes (boundary points), we selected 1, 2, 3, 4, 10, 15, or 24 counties
from the original TIGER files, and formed several triplets of test data sets (TIGER, LLS
and DLG). We always chose a subset of counties forming geographically contiguous
regions so that neighboring counties would have some overlap of boundary points. The
list of counties and their geographic locations are shown in Appendix A, Table 7 and
Figure 7. This set of file triplets is denoted as the test data set #3.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 12

5.2 TIGER, LLS, and DLG Tradeoff Evaluations

The experimental results of our tradeoff evaluations between storage and retrieval
efficiency are presented in Tables 1 and 2. As described in the previous section, the test
data sets #1 and #2 {(DLG, LLS) and (TIGER, LLS, DLG)} were formed from the
original DLG and TIGER files by converting them into other file formats using
ArcToolBox and our software. Each file format was then read in separately, and the
storage and loading measurements were recorded in Tables 1 and 2.

Table 1 : Test data#1: SSURGO Soil Database, Madison County, IL. Loading time
includes all SSURGO soil boundaries. Hard disk measurements pertain to all boundaries
in the original SSURGO files.

Total Load Time
(s)

Hard Disk
(MB)

Zip Unzip

Load RAM Required
(MB)

Zip Unzip

Number
of

Nodes

LLS
(Shapefile)

 41.36 290 65 90 2,787,490

DLG 105.72 103.72 380 23 79 2,787,790

Table 2 : Test data#2: U.S. Census Bureau 2000 TIGER/Line files for the state of Illinois
(102 counties). Loading is constrained to block groups, zcta, census tract, and counties
((Total Load Time and Load RAM Required parameters). Hard Disk and Number of
Nodes measurements for LLS and DLG formats contain only block groups, zcta, census
tract, and county boundaries, whereas the same measurements for TIGER format include
all types of boundary information for the state of Illinois.

Total Load Time (s) Hard Disk (MB)

Unzip

Load RAM

Required (MB) Zip Unzip

Number of

Nodes

TIGER 1300.2 200 112 940 2,176,719

LLS 12.7 37 27 47 641,955

DLG-3 12.9 52 8 24 457,850

Before explaining the experimental results by comparing pairs of file formats in
Sections 5.3 , 5.4 and 5.5, we posed the following two questions. First, is there any
dependency of storage on the boundary content? In other words, if we had a file with
watershed and zip code boundaries, would the results be different from evaluating Census

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 13

tracts and blocks, and how? Second, can we predict the total load time as a function of
the number of polygons/nodes without exhaustive experimentation? Or in other words,
what would be the dependency between boundary information retrieval and the number
of retrieved nodes?

5.2.1 Storage Dependency on Boundary Content

 The answer to the first question is related to the amount of boundary overlap.
Ideally, one would experiment with sets of boundaries that span cases from a zero
overlap (e.g., non-adjacent county boundaries) to an overlapping hierarchy of polygons
(census blocks, block groups and tracts). Our data sets represent the cases of partial
overlap (SSURGO) and large overlap (TIGER) of boundaries. Thus, the experimental
results will vary as a function of boundary content in the following way: the more
overlapping boundaries, the smaller hard disk requirements for TIGER format in
comparison with DLG and LLS (in this order), and the smaller load RAM requirements
for LLS format in comparison with DLG and TIGER.

Our conclusion is supported by comparing the number of loaded nodes versus the
number of unique nodes using the test data sets #1 and #3, and by inspecting the LLS
files. By evaluating the ratio s of these two numbers (loaded nodes versus unique nodes)
using the test data #2 (partial boundary overlap), we obtain s equal to 2.02
(5630800/2787490). The same evaluation of the ratio s using the data set #3 (large
boundary overlap) led to an average ratio value equal to 2.6416. The measurements using
the test data set #3 (ZCTA, Block Group (BG), Census Tract (CT), and County
boundaries for 1, 2, 3, 4, 10, 15, and 24 Illinois counties) are shown in Figure 2.
Numerical values for the test data set #3 are reported in Appendix A, Table 5 through
Table 11, LLS row.

LLS File Format

y = 2.6416x + 2281.2
R2 = 1

0
50000

100000
150000
200000
250000
300000
350000
400000

0 20000 40000 60000 80000 100000 120000 140000

Number of Unique Nodes

N
um

be
r o

f L
oa

de
d

No
de

s

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 14

Figure 2: Storage efficiency measurements of LLS files using the test data set #3
(Hierarchical boundary content). The points correspond to evaluations for data sets with
boundaries for 1, 2, 3, 4, 10, 15, and 24 Illinois counties.

We took additional measurements to compute the ratio s for (a) watershed and
county boundaries (s = 84,601/47,636=1.776), and (b) watershed and ZCTAs boundaries
(s=344,533/201,767=1.708). We observed that approximately 70% of the points in both
(a) and (b) are shared between multiple boundaries. Thus, the inefficiency of LLS format
due to the duplicate points of neighboring boundaries would not decrease below s=1.7 for
the test data.

5.2.2 Boundary Information Retrieval Dependency on Number of Nodes

 In order to answer the second question about the relationship between a load time
and a number of nodes, we divided the Total Load Time into four components: t1, t2, t3
and t4 (see Equation below and Figure 3). The first component t1 corresponds to the time
to construct polygons from an ordered list of edges. The second component t2 is for the
time to create an ordered list of edges from an unordered set of edges. The third
component t3 represents the time to convert ASCII characters to numeric type values. The
last component t4 is the time to load any sequence of bytes (ASCII characters or binary
values) from a file. We introduce these time components based on our understanding of
the three vector file formats.

1 2 3 4Total Load Time t t t t= + + + (1)

The zero and non-zero time components are summarized for each file format in
Table 3. The total load time as a function of the number of nodes can be predicted by
knowing that the time components t1, t2, t3 and t4 are linear with the increasing number of
nodes. The quadratic dependency of the time component t2 (creation of ordered list of
edges) as a function of the increasing number of nodes is avoided by the fact that the
unordered edges are grouped by counties rather than by states. Based on our empirical
observations, 1 2 3t t t< < for a fixed number of nodes, which leads to superior total load
time for LLS format in comparison with DLG and TIGER formats (in this order). Our
theoretical predicted Total Load Time as a function of the number of nodes is shown in
Figure 3 and is independent of test data sets (addressed as the question number 1 above).

Table 3: Total Load Time decomposition.

Total Load
Time=Sum(ti)

t1 t2 t3 t4

LLS X 0 0 X

DLG X 0 X X

TIGER X X X X

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 15

Figure 3: Total Load Time decomposition for TIGER, DLG and LLS file formats.

Figure 4 : Theoretically predicted Total Load Time as a function of the number of nodes.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 16

We have obtained experimental measurements that support our theoretically
predicted Total Load Time dependency on the number of nodes using the test data set #3.
Figure 5 shows our measurements and linear trends, where the points correspond to data
sets with boundaries for 1, 2, 3, 4, 10, 15, and 24 Illinois counties. These supporting
measurements for “Total Load Time” and “Load RAM Required” were calculated by
averaging three runs to load the ZCTA, Block Group (BG), Census Tract (CT), and
County boundaries for each data set. The total number of nodes and the number of unique
nodes were measured (a) by counting nodes inside of our software developed for loading
LLS and DLG files, and (b) by summing end points and shape points for TIGER files
according to the accompanying TIGER documentation (see details in Appendix A).
While TIGER files do not contain any duplicate points, LLS duplicate points were found
using a hash table in our software.

TIGER: y = 0.0005x
R2 = 0.9862

DLG: y = 2E-05x
R2 = -0.0932

LLS: y = 8E-06x
R2 = 0.9914

0

50

100

150

200

250

0 100000 200000 300000 400000 500000

Number of Loaded Nodes

To
ta

l L
oa

d
Ti

m
e

[s
] LLS

DLG
TIGER
Linear (TIGER)
Linear (DLG)
Linear (LLS)

Figure 5 : Total Load Time vs. Number of Nodes for 1, 2, 3, 4, 10, 15, and 24 counties
with a best-fit line.

According to Figure 5 and based on our test data set #3, the total loading time for
TIGER files is approximately 40 times slower than for LLS files, and the total loading
time for DLG files is about 2.5 times slower than for LLS files. Numerical values for
these measurements are provided in Appendix A, Table 5 through Table 11. We
collected measurements for only 1, 2, 3 and 4 county aggregations in the case of DLG
format because the data preparation is very time consuming.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 17

5.3 DLG and LLS Comparisons

The DLG optional and LLS (or ESRI Shapefile) formats specify boundaries over an area.
Both formats have geographic information that allows the boundaries to be geo-
referenced with other data sources. The formats differ in how the data is structured and
stored.

The first primary difference between DLG and LLS is that DLG is stored in an
ASCII format, while LLS is stored in a binary format. DLG files are comprised of ASCII
characters organized into fixed-length logical records of 80 characters. When loading a
DLG file, all data contained within must be converted to native data types. For example,
a coordinate is stored as the ASCII characters “4598829.0” in the file. This must be read
in and converted to its numeric value. ESRI Shapefile, on the other hand, stores the data
as a series of bytes that can be quickly converted to a data type. For the previous
example, the value “4598829.0” would be stored as 8 bytes that can be directly converted
into a numeric value However, it may be necessary to reverse the order of the bytes to
account for the byte order (little or big endian). The reading (and possible reversing) of
bytes for a shapefile is far simpler than the ASCII-to-native transformation needed for
DLG.

This primary difference in representation (ASCII vs. binary) greatly affects the
loading times of the two approaches. Each entry in a DLG soil database must be read
individually, and then converted to a numeric value. This is the most time-consuming
operation when loading the data, typically over 25% of the loading time of a DLG file.
Loading ESRI Shapefile, however, is much quicker. It is simply reading a series of bytes
from a file, with little conversion needed. This quickness comes at the price of a larger
file size for the ESRI Shapefile. In an examination of one county, the DLG data needs
approximately 79 MB of disk space uncompressed, 23 MB compressed. The ESRI
Shapefile, on the other hand, needs 90 MB of disk space when uncompressed, and 65 MB
when compressed. These results are summarized in Table 1Error! Reference source
not found.. The difference in compressed sizes between the two encodings is attributable
to their physical representations. DLG data contains fixed-length records with white
space between elements to maintain the fixed length. This white space is insignificant
and can be easily compressed. On the other hand, all binary data in an ESRI Shapefile are
significant and cannot be easily compressed.

 The second difference between DLG and LLS is the way how the data in a file are
structured. DLG format uses nodes, lines, and areas to define its polygons. In each of
the SSURGO DLG datasets examined so far, nodes have not been used to define lines or
areas. The lines are a series of coordinate values, and the areas have a list of the lines
that make up the area. On the other hand, LLS format lists the bounding box and the
points for each boundary contained within it. DLG format makes more efficient usage of
space; areas that share lines will both reference the same line, while in a shapefile, each
coordinate, including coordinates shared between different boundaries, is explicitly listed.
In addition, this difference makes it necessary to first read all the lines in a DLG file
before reading in the areas, because the areas are made up of a list of the lines. The lines
have to be kept in a lookup table, and areas cannot be fully processed until all lines have
been read.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 18

The consequence of the second differences between DLG and LLS is that
different data structures have to be used when loading these files. Our goal is to have one
ShapeObject that contains all the polygons in a soil database. DLG format gives no hint
as to how many points will be needed to store all the polygons in the DLG file.
Furthermore, it does not give the bounding box for each polygon. In contrary, ESRI
Shapefile stores these values so that it is possible (a) to pre-compute the space
requirements needed and (b) to allocate arrays to hold the data when loading a Shapefile.
With DLG, however, it would only be possible to pre-compute the sizes by reading in all
data files twice. One time to determine the sizes, and one time to actually read in the data.
In addition, the bounding box for each polygon is not stored in DLG, and must be found
while reading in the coordinates of each area. This requires comparisons for each
coordinate to find the bounding box. In our implementation, expandable arrays (or
vectors) were used so that the files only had to be read in once. Then, once fully read, the
data are copied into an array in the ShapeObject, of the exact size needed. The problem
with this approach is that when the copy is made, two arrays must exist in memory. The
first will be the array that contains the vector data. The second will be the new
ShapeObject array to copy the contents of the vector into. This causes the memory
requirements of DLG-3 files to balloon to twice the total necessary size in the worst case,
when copying all the individual points of all the polygons into one ShapeObject.

The third difference between DLG and LLS is related to georeferencing
information. SSURGO DLG files are stored as quarter-quadrangles. Each quadrangle
represents 7.5 minutes of a degree of longitude and latitude. It is necessary to load 64
individual files to represent a one degree block. ESRI Shapefile does not need to be
represented this way. However, Shapefiles could be stored in this way, if desired. All
coordinates in SSURGO DLG files are stored in UTM format. This causes problems
when geo-referencing the boundaries in I2K because the state of Illinois is located in both
UTM zone 15 and UTM zone 16. The solution was to immediately translate the UTM
coordinates to latitude and longitude. Over 29% of the time to load a SSURGO DLG file
was spent in the conversion from UTM coordinates to latitude and longitude. Each DLG
file contains the UTM zone in the header information. ESRI Shapefile normally contains
latitude and longitudinal geo-referencing information. No conversion was required when
loading the shapefile in I2K. A potential drawback of the ESRI Shapefile format is that
there is not a standard way to define the projection used in for the coordinates. DLG has
a value in the header to signify if UTM or Albers projection is used. Also, some of the
projection parameters are stored in the header of a DLG. Shapefiles, on the other hand,
do not store projection information. This information could be stored with the meta data
for a shapefile, but it is not required. This makes it difficult to distribute shapefiles with
geo-referencing information other than standard latitude and longitude.

5.4 DLG and TIGER Comparisons

DLG and TIGER offer similar methods to encode vector data. TIGER’s use of an edge
with shape points corresponds directly to DLG’s use of lines and coordinates. Likewise,
a TIGER polygon is comprised of a series of edges, and a DLG area is made up of a

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 19

series of lines. This provides a compact, human-readable representation of the vector
data.

The two formats differ in the type of data that are encoded. DLG format typically
encodes one layer of data in a file, such as the soil types used by SSURGO. Other layers,
such as water boundaries, are encoded in separate files. This scheme introduces some
redundancy between the layers. Layers are unrelated to one another, and any shared
boundaries will be specified in each layer. For example, a soil layer encoded as a DLG
may have boundaries defined along a river. A layer containing bodies of water may share
the same boundaries, but the points will be specified again because the soil layer is
unrelated to the body of water layer in DLG. TIGER format, on the other hand, groups
all edges together, regardless of layer. The different metadata files are used to determine
which edges to use. This format allows for less redundancy.

Polygons are retrieved very differently by the DLG and TIGER loaders. DLG
format specifies the exact boundaries for each polygon. A list of lines defines the exact
border of a polygon, and the lines are in the proper sequence. Since the lines appear in
the proper sequence, the polygon can be quickly constructed after all line retrieval. In
contrary to DLG format, the boundaries stored in TIGER format must be found
programmatically. Each edge is labeled with the polygons that appear on the left and
right of the edge. To construct a polygon A, you must first find all edges that border the
polygon A. The edges only define the end points of each edge, and not the order in
which the edges should be connected. So the boundary of polygon A must be constructed
programmatically by comparing the end points of each edge. Thus, the TIGER polygon
construction is far more complex and time-consuming than the DLG polygon
construction.

5.5 TIGER and LLS Comparisons

One can derive TIGER and LLS comparisons from the description provide in
Sections 5.3 and 5.4 that compare DLG and LLS, and TIGER and DLG formats. Since
the experimental tradeoff evaluations of TIGER and LLS are summarized in Table 2, we
devoted this section to the implementation of TIGER to LLS conversion.

The underlying principle of the conversion process from TIGER/Line files to
ESRI Shapefiles could be compared to sorting points according to the order of boundary
edges. This is illustrated in Figure 4. In reality, the conversion process begins by loading
the raw TIGER/Line files into 2-D table-like data structures by making use of manually
developed meta data files. Since the TIGER/Line files are fixed-width encoded flat files,
meta data is necessary to define the indices of the first and last characters for each
attribute in the lines of the flat file. This information, the attributes’ names, and their type
(integer, floating point number, string, etc) come from meta data files provided by the
Census Bureau. The final piece of information contained in the meta data file is a
“Remove Column” field, which dictates whether or not the attribute will be dropped from
the table as it is read in. Attributes that are not used during the processing are removed
early on for the sake of memory efficiency. The meta information for each Record Type

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 20

is stored in a comma-separated-value (csv) file, which can easily be parsed into a table
object, then accessed in that form by the routine that parses the main data file.

Once the TIGER/Line data are in the form of tables, they are streamed through a
complex system of procedures, including conversion to several intermediate data
structures, before being inserted into Hierarchical Boundary Objects (HBoundary) [7].
Each HBoundary represents one type of region (county, census track, etc) for a single
state. It can be also viewed as one master list of boundary points that all boundaries
reference by pointers. The RAM memory savings of HBoundary versus ShapeObject for
each point that is shared by two counties, two census tracts, and two block group
boundaries is 30 bytes. For the state of Illinois, this optimization translated into a 38%
reduction in memory usage (16.45 MB versus 26.64 MB).

4

Figure 6: The TIGER/Line to ESRI Shapefiles conversion of boundary representation can
be viewed as a transformation from an unordered set of points to a clock-wise ordered set
of points.

Finally, the HBoundary object is converted into LLS format by constructing all
polygons. The resulting LLS format file was tested by loading it into the commercial
ArcExplorer software package [3]. For our experimental tradeoff evaluations, we
extracted only a selected subset of Census boundary records from the Census 2000
TIGER/Line files. Thus, it is hard to evaluate loading RAM requirements for TIGER and
other two formats since the HBoundary object contains all hierarchical boundaries and
their associated information, while the converted LLS file contains only four types of
boundaries (counties, ZCTAs, blocks and tracts – see Figure 1) and extracted information
about region names, neighboring regions to each boundary, and an internal point of each
region.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 21

6. Summary

In this paper we have investigated the storage and retrieval efficiency tradeoffs between
the ESRI Shapefile (LLS), DLG, and TIGER formats. LLS files will provide the fastest
method for boundary retrieval (40 times faster than TIGER and 2.5 times faster than
DLG). All boundaries are stored in a binary format for quick retrieval. This speed comes
at the price of file size. Each boundary in a LLS file contains all the points that make up
the boundary. This introduces storage redundancy (between 70% and 180% redundancy
in our experiments) since boundaries can be shared between different polygons. Digital
Line Graphs reduce the amount of redundant data. This reduction is tempered by the
need for more retrieval processing per boundary. The TIGER format further reduces the
amount of data. TIGER format is the most compact representation that comes at the cost
of the highest boundary retrieval requirements.

Our goal was to evaluate numerically the trade-offs between storage and
boundary retrieval requirements for the three vector files. The measurements about
“Total Load Time”, “Load RAM Required” and “Hard Disk” as a function of “Number
of Loaded/Unique Nodes” were used as our metric to demonstrate the trade-offs. Our
measurements support the existing knowledge about the choice of a file format depending
on the data content that is mapped to boundary overlaps. However, there are other metrics
that might affect institutional decisions as well, and were not included in this study. We
could enumerate a few metrics, such as (1) a cost of storage media and RAM, (2) a cost
of software development to support complex file formats, (3) a preservation of storage
media, (4) an availability of software tools for ingesting and processing certain file
formats, or (5) an open source implementation of software tools that would allow
tracking discrepancies in file format interpretation (loading) and replication (writing) (see
Appendix B). While we did not quantify the additional possible metrics, we have made
the following observations. First, numerous software tools support the ESRI Shapefile
format whereas not many tools work with Digital Line Graphs or TIGER files. Second,
the amount of time we have spent implementing the LLS, DLG and TIGER file format
loaders was increasing in the order of the listed file formats. We hypothesize that the
increase is almost linear but it becomes quadratic as the file format is too complex to
track and eliminate software bugs. Finally, the cost of storage and RAM has been rapidly
decreasing over the last decade. We could not foresee the future technological
advancements of storage media that would favor one file format over another.

Acknowledgement

This research was supported by a National Archive and Records Administration (NARA)
supplement to NSF PACI cooperative agreement CA #SCI-9619019. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
National Science Foundation, the National Archives and Records Administration, or the
U.S. government.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 22

References

[1] Campbell, James B. Introduction to Remote Sensing, Second Edition. The Guilford
Press, New York. 1996.

[2] Miller, Catherine L. TIGER/Line Files Technical Documentation. UA 2000.

 U.S. Department of Commerce, Geography Division, U.S. Census Bureau.

 http://www.census.gov/geo/www/TIGER/TIGERua/ua2ktgr.pdf

[3] ArcExplorer, ESRI web site:

 http://www.esri.com

[4] ESRI Shape file, File Format Specification,

 http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[5] Bajcsy P. et. al., “Image To Knowledge”, documentation at web site:

 http://alg.ncsa.uiuc.edu/tools/docs/i2k/manual/index.html.

[6] Alumbaugh T.J. and Bajcsy P.,”Georeferencing Maps with Contours in i2k”, ALG
NCSA technical report, alg02-001, October 11 2002.

[7] Groves P., S. Saha and P. Bajcsy, “Boundary Information Storage, Retrieval,
Georeferencing and Visualization,” Technical Report NCSA-ALG-03-0001, February
2003).

[8] “Data To Knowledge”, software documentation at web site:
http://alg.ncsa.uiuc.edu/tools/docs/d2k/manual/index.html

[9] “Digital Line Graph References” prepared by the Office of Information Technology,
http://www.oit.ohio.gov/SDD/ESS/Gis/DigitalLineGraphs.aspx#Documentation

[10] Digital Line Graphs from 1:24,000-Scale Maps Data Users Guide 1,
http://www.geodata.gis.state.oh.us/dlg/usrguide/usrguide.htm

[11] “US GeoData, Digital Line Graphs” prepared by the U.S. Department of the
Interior and the U.S. Geological Survey,
http://www.usgsquads.com/downloads/factsheets/usgs_dlg.pdf

Appendix A: Additional Numerical Results Used for Comparative
Evaluations

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 23

In order to establish the evaluation entries about the number of nodes and boundaries in
TIGER files, we searched for relevant information in the set of TIGER files. For this
purpose, we used information about the number of end points, shape points, and polygons
for each of the 24 counties in Illinois stored in TIGER format. The information was
found in the counts17.txt file that comes with TIGER files and is summarized in Table 4.
The number of end points is the number of “1” records for the given county. The number
of shape points is the number of “2” records. The number of polygons is the number of
“P” records.

Table 4: The total number of end points, shape points, and polygons in TIGER format.
 End

Points
Shape
Points

Polygons

Champaign 21757 7349 7671
Ford 6634 2959 2440
Piatt 6679 2860 2352
Vermillion 17758 7544 6158
Douglas 7554 3236 2688
Dewitt 6943 3384 2463
Mclean 25182 10812 8564
Livingston 14552 7260 5285
Iroquois 14308 7305 5058
Coles 12168 5579 3940
Edgar 9298 5077 3181
Moultrie 5930 2968 2064
Shelby 12569 6723 4076
Macon 16835 5515 5730
Cumberland 5955 3336 1867
Sangamon 29943 11552 10467
Christian 13594 5904 4668
Effingham 11377 5770 3942
Jasper 7260 4677 2145
Clark 8168 4136 2538
Fayette 13899 8050 3979
Woodford 10559 5201 3247
Tazewell 17998 6845 5872
Mason 7901 4407 2669

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 24

Figure 7: Geographic locations of Illinois counties. The illustration was obtained from
http://quickfacts.census.gov/qfd/maps/illinois_map.html.

The following tables provide measurements using the test data set #3 and were
used for creating Figure 3 and Figure 5.

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 25

Table 5: Loading ZCTA, BG, CT, County boundaries for Champaign county.

Number of
Nodes Loaded

 Total Load
Time (s)

Load Ram
Required

(MB)

Total
Number of
Boundaries Total Unique

LLS .296 1.2 243 23064 8070

DLG .606 1.09 245 24521 8022

TIGER 25.2 76 7671 29106 29106

Table 6: Loading ZCTA, BG, CT, County boundaries for Champaign and Ford counties.

Number of
Nodes Loaded

 Total Load
Time (s)

Load RAM
Required

(MB)

Total
Number of
Boundaries Total Unique

LLS .295 1.5 282 28084 9589

DLG .669 1.2 284 29756 9295

TIGER 30.4 90 10111 38699 38699

Table 7: Loading ZCTA, BG, CT, County boundaries for Champaign, Ford, and Piatt
counties.

Number of
Nodes Loaded

 Total Load
Time (s)

Load RAM
Required

(MB)

Total
Number of
Boundaries Total Unique

LLS .353 1.7 314 33782 11666

DLG .696 1.5 316 35802 11269

TIGER 33.9 91 12463 48238 48238

Table 8: Loading ZCTA, BG, CT, County boundaries for Champaign, Ford, Piatt, and
Vermillion counties.

Number of
Nodes Loaded

 Total Load
Time (s)

Load RAM
Required

(MB)

Total
Number of
Boundaries Total Unique

LLS .5 2.7 432 54035 19644

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 26

DLG .913 2.5 442 57002 18976

TIGER 48.3 95 18621 73540 73540

Table 9: Loading ZCTA, BG, CT, County boundaries for the first 10 counties in Table 4.

Number of
Nodes Loaded

 Total Load
Time (s)

Load RAM
Required

(MB)

Total
Number of
Boundaries Total Unique

LLS 1.1 4 M 886 135028 50566

TIGER 104.2 92 M 46619 191823 191823

Table 10: Loading ZCTA, BG, CT, County boundaries for the first 15 counties in Table
4.

Number of
Nodes Loaded

 Total Load
Time (s)

Load RAM
Required

(MB)

Total
Number of
Boundaries Total Unique

LLS 1.5 5.7 1166 194502 72715

TIGER 136.3 94 63537 266029 266029

Table 11: Loading ZCTA, BG, CT, County boundaries for the first 24 counties in Table
4.

Number of
Nodes Loaded

 Total Load
Time (s)

Load RAM
Required

(MB)

Total
Number of
Boundaries Total Unique

LLS 2.6 9.87 2714 339801 127693

TIGER 229.9 97 103064 443270 443270

Appendix B: Test Data Preparation Issues

This appendix shows the discrepancies between the expected TIGER and LLS file sizes
for Champaign, Piatt, Vermillion, and Ford counties in Illinois. We compared the original
TIGER files with the LLS files downloaded from the website
http://www.esri.com/data/download/census2000_tigerline/. Table 12 and Table 13
contain larger file sizes for the LLS files than for the TIGER files which contradicts our
expectations. We included ZCTAs to the LLS files since they were part of the
downloaded set of files. There was not enough information at the above URL about the

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 27

TIGER to LLS conversion procedure. The conversion was performed by software from
GIS Tools, Inc., and not enough information was given about the data degradation.

Table 12: Sizes of TIGER files that represent all hierarchical boundaries for Champaign,
Piatt, Vermillion, and Ford counties in Illinois.

 Champaign Piatt Vermillion Ford

Unzipped
TIGER Size

14 MB 4.2 MB 11 MB 4.2 MB

Zipped
TIGER Size

1.6 MB .48 MB 1.3 MB .49 MB

Table 13: Sizes of LLS files downloaded from the website
http://www.esri.com/data/download/census2000_tigerline/. The files should represent all
boundaries contained in a corresponding TIGER file.

 Champaign Piatt Vermillion Ford

Unzipped
LLS Size

12 MB 1.5 MB 11 MB 3.8 MB

Zipped LLS
Size

3.6 MB 1.4 MB 3.3 MB 1.2 MB

Appendix C: Testing Procedures

(1) Data preparation
This step has been described in Section 5.1.

(2) File loaders

For our performance evaluations, we used the ESRI Shapefile and TIGER loaders that
have been developed previously in I2K. Loaded data were stored in the I2K data
representation called ShapeObject.

For this effort, we developed several DLG format data loaders. The SSURGO DLG
loader reads each individual quadrangle (specified in the DLG format) and merges them
into one large ShapeObject. The nodes in SSURGO are represented in UTM coordinates
and hence this loader translates the coordinates into latitude/longitude for use in a
ShapeObject.

(3) Testing software

Storage and Retrieval Efficiency Evaluations of Boundary Data Representations For
LLS, TIGER and DLG Data Structures.

Clutter and Bajcsy | Automated Learning Group, NCSA 28

Several simple testing codes were used to run the performance evaluations. The DLG
tests load a DLG into a ShapeObject using the aforementioned loader, counts the total
number of points contained in the ShapeObject, and uses a hashing strategy to find the
number of unique points in the map. The Shapefile tests perform in much the same way.
The source code for these tests is in Test_DLGAndShapefile.java in the
ncsa.d2k.modules.projects.i2k.tests.io package.

The source code for testing TIGER files was implemented in D2K Toolkit version 3.0.
(see D2K documentation in [8]). We restored the D2K version 3.0 and ran all TIGER
tests with this suite.

(4) Testing environment
All tests were run on the same machine (PC, Linux, Pentium 4 Xeon, 2GB of RAM,
jdk1.4.2_03). Timing estimates are generated from within the source code, and should be
fairly accurate representations. The memory requirements are rough estimates obtained
by observing the size of the java heap at runtime. The maximum heap size was set to 100
MB.

