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Abstract 

We present our work on face detection and pose estimation from hyperspectral imagery. 
The long-term goal of our research is to explore the use of hyperspectral imagery for 
building an automated system for human recognition. We report our preliminary results 
obtained with the face detection algorithm proposed by Paul Viola and Michael Jones. 
The algorithm was extended to work not only with monochromatic images but also with 
any dimensional images by pre-processing images using principal component analysis 
(PCA) and applying the algorithm to the first principal component.  

The second part of this report focuses on spectral-based and spatial-based pose 
estimation. Due to the complexity of human head pose estimation; we analyze the 
problem of human hand pose estimation in our initial study. We investigate the hand 
material properties by spectral and spatial analyses, and identify the primary limitations 
of each analysis from the pose estimation viewpoint. A summary of pros and cons for 
spectral and spatial analyses is provided at the end. 

 

1 Introduction 
Human identification (HID) have becomes one of the most prosperous fields in the past 
ten years. Among the wide range of HIDs, human face analysis is the one that has been 
devoted the most extensive research in computer vision. Human face analysis research 
can be divided into several subfields: face detection, face tracking, face recognition, pose 
estimation, and facial expression recognition. In this paper, we will focus on face 
detection and pose estimation. 

In section 2, we discuss the face detection algorithm developed for our system. Face 
detection is usually the first stage for any automated face analysis system. After 
extracting the faces from the image, we can further perform recognition, pose estimation, 
and etc. Several face detection algorithms have been developed in the past decades, and 
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the following surveys provide a good overview of all existing algorithms [1] [2]. For 
example, according to [1], face detection methods can be classified into four categories: 
knowledge-based methods, feature invariant approaches, template matching methods, 
and appearance-based methods.  

In this work, we focus on the algorithm proposed by Viola and Jones [7], which can be 
view as an appearance-based method.  The appearance-based method is a supervised 
classification technique that is based on learning from a set of training images, and 
capturing the most representative variability of facial appearance. Section 2.1 describes 
invariant image features that represent facial characteristics. Each feature provides an 
input for building a supervised classifier (denoted as a weak classifier). Section 2.2 
outlines how to select the most informative features and combine the weak classifiers into 
the final strong classifier for face detection. This step is executing using a Boosting 
technique, where the final strong classifier is a linear combination of the weak classifiers. 
Section 2.3 describes how to achieve the real-time detection by decomposing the strong 
classifier into several parts. Section 2.4 presents a principal component analysis method 
that is used for extending the grayscale face detection algorithm to process color and 
hyperspectral images as well. Section 2.5 shows the experiment results of the 
implemented face detection system. 

In section 3, we discuss several possible approaches to pose estimation from 
hyperspectral imagery. The goal of pose estimation is to calculate 3D orientation 
information from a 2D image. In general, pose estimation still remains a hard problem in 
the computer vision domain. Previous pose estimation methods can be roughly divided 
into two categories: template-matching methods and appearance-based methods. 
Template-matching methods usually construct 3D head model as template and match it 
with 2D images [3] [4]. Appearance-based methods view pose estimation problem as a 
classification problem. It usually requires several training images for each pose [5] [6]. In 
this paper, we investigate if spectral information could be sufficient for pose estimation. 

In section 3.1, we introduce hyperspectral imaging, and describe why it could provide 
more information for pose estimation. In section 3.2, we describe a hyperspectral camera 
calibration procedure. In section 3.3, we discuss segmentation of hyperspectral images 
with the goal of separating image background from hand regions. In section 3.4, we 
present our experiments for pose estimation based on spectral information and discuss the 
distance metrics for skin/nail classification. In section 3.5, we rely on the phone 
illumination model used by computer graphics community and compute spatial variance 
as a feature for detecting nail regions. In section 3.6, we summarize the limitations of 
spectral-based and spatial-based pose estimation approaches. 

 

2 Face Detection 

In order to achieve a real-time face detector, we implemented the algorithm proposed by 
Paul Viola and Michael Jones [7] [8]. The algorithm starts with a large number of 
classifiers and follows by using the AdaBoost technique [9] [10] to obtain a single 
classifier for face detection. To meet the requirements of a real-time system, feature 
detection is implemented as a cascade process that divides a single feature detector into 
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several large ones. The feature detectors applied early in the process eliminate most of the 
false image samples, so that the feature detectors applied later have to deal with very few 
image samples.  

We also extended the original face detection algorithm operating on grayscale images to 
process color and hyperspectral images by performing a principal component analysis 
(PCA) and applying the algorithm to the first principal component. Faces detected in 
color and hyperspectral images can be used for further analyses, such as, face recognition 
or pose estimation. 

2.1 Features 
In general, image features should be very simple, easy to compute, and robust to 
background noise, so that face detection can take place in real time and perform well. We 
used seven types of such image features and they are shown in Figure 1. 
 

 
Figure 1: Filters defining seven face detection feature types. The feature value is the difference 
between the sums of the pixel values, which lie within the gray region subtracted by the sum of pixel 
values within the black region. Feature types (a-e) correspond to symmetric two-, three- and four-
rectangle characteristics of human face. Feature types (f) and (g) model asymmetric characteristics of 
human face. 

  

Each feature type could be of any size and located at any position in image. The feature 
value is the sum of the pixel values in gray area subtracted by the sum of pixel values in 
the black area. While building a model for supervised classifier during its training phase, 
we worked with 24 by 24 pixel training images, and chose this pixel size to be our base 
sub-window size. We enumerated exhaustively all possible spatial overlays of all seven 
filters in one 24 by 24 pixel image. The total number of possible spatial overlays is 
summarized for each feature type in Table 1. 

 
Table 1: Number of features per feature type extracted from one 24x24 training image. 

Class (a) Class (b) Class (c) Class (d) Class (e) Class (f) Class (g) Total 
43,200 43,200 27,600 27,600 20,736 3,300 3,300 168,936 
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We calculated that there are totally 168,936 features for a 24 by 24 image (576 pixels 
only). If we compute the sum of gray area and black area for each feature separately, then 
the complexity of extracting all features would be )( 33whO , where h  and w  are the 
height and width of a training image respectively.  

One should be aware that although feature extraction is not a time critical operation 
during a training phase, it becomes a time critical computation during a testing phase. 
Thus, we try to decrease the time for extracting all features by introducing the concept of 
integral image and dynamic programming. We construct an integral image (I) for each 
training image. An integral image is formed as a table of locations ),( yx  with the sums 
of the pixels above and left to it, inclusive. The mathematical expression for computing 
an integral image can be written as: 

' , '

( , ) ( ', ')ORIG

x x y y

I x y I x y
≤ ≤

= ∑  

where ( , )ORIGI x y is the original image intensity at location ),( yx . The integral image 
table can be computed via dynamic programming: 

( , 1) ( 1, ) 0
( , ) ( 1, ) ( , 1) ( 1, 1) ( , )ORIG

I x I y
I x y I x y I x y I x y I x y

− = − =

= − + − − − − +
 

The integral image computation requires )(hwO  operations to construct the table, which 
is linearly increasing with the size of the original image. Each feature can be computed 
from the integral image table by a few operations. For example, a feature type (a) can be 
computed by performing only seven operations (see Figure 2). 
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Figure 2: ,,,,, EDCBA  and F  are the values of an integral image table. The feature of type (a) 
can be computed by subtracting black pixels )( ECBF −−+  from gray pixels )( DBAE −−+ , 
which equals to )2()2()()( CAEFDBDBAEECBF ++×−++×=−−+−−−+ . 

The complexity of enumerating every feature is roughly )( 22whO . The total complexity 
of feature extraction is )()()( 2222 whOwhOhwO =+  in comparison with the original 
complexity )( 33whO . 

2.2 Classification Function 
According to Table 1, there are N=168,936 features that should be extracted from each 24 
x 24 image sub-window. However, if the number of training images M is less than N then 
the classification problem becomes over-determined and therefore over-fitting would 
likely occur. In our study, we obtained M=10,000 training images and had to deal with 
the case of M<N. Our approach is based on one of the boosting techniques in order to 
build the final strong classifier that does not over-fit the data. 

According to [11], the goal of boosting is to improve the accuracy of any given learning 
algorithm. First, create a weak classifier with accuracy of more than 50%. Second, add 
new weak classifiers to learn new training sets that would increase accuracy of the new 
classifier. The process will iterate and choose the most informative features to improve 
the overall classifier. 

AdaBoost, adaptive boosting, is one of the variations of boosting. It allows adding weak 
classifiers linearly to current strong classifier, and the overall training error rate will be a 
monotone non-increasing function with domain of the total number of chosen weak 
classifiers. The algorithmic steps are provided in Figure 3. 

 

 Given: ),(,),,( 11 nn yxyx L , where 0iy =  for negative (non-face) and 1iy =  positive 
(face) training images. 

 Compute the weights 
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 For each feature, j, train a classifier jh  and evaluate its error with respect to 

tw as ∑ −= iijij yxhw )(ε . 

 Choose the classifier, th  with the lowest error tε . 

 Update the weights: 
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Figure 3: The algorithmic steps of AdaBoost. 

Here, tihi ,,1, L=  corresponds to the weak classifiers. Each weak classifier is formed 
based on a feature described in Section 2.1. Using a threshold value between the feature 
value of face data and that of non-face data, we can obtain a simple weak classifier with 
error rate less than 50%. The final strong classifier is a linear combination of these weak 
classifiers. Furthermore, based on computational learning theory, the final strong 
classifier will have a monotonously non-increasing error rate for an increasing number of 
weak classifiers [9]. Knowing that the error rate is lower bounded, the overall error rate 
will converge to zero as long as we provide enough features with classification rate more 
than 50%. 

2.3 Achieve the real-time detector 
Viola and Jones also proposed an algorithm for constructing a cascade of classifiers that 
decreases the computation time dramatically during face detection (testing phase). The 
cascade of classifier algorithms decomposes a single AdaBoost procedure into several 
stages, and each stage executes its own AdaBoost procedure. In each stage, a window 
sub-detector will eliminate roughly 50% non-face images and preserve most of face 
images (e.g. 99.9%). Therefore, if there are 32 stages, then the final false positive would 
be only 1032 10328.25.0 −×= , and the detection rate would be %85.96999.0 32 = . It is 
important to mention that the product of detection rates will decrease exponentially, and 
one should maintain a high detection rate at each stage. The complete algorithm can be 
found in [7]. 

By introducing a cascade of classifiers, most regions will be discarded in the early steps 
of face detection since usually large portions of images are typically without faces. Early 
steps need just small number of weak classifiers to achieve desired prediction rate 
because of the nature of the AdaBoost algorithm. Therefore, most non-face region can be 
discarded by computing relatively small number of features. 
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2.4 Extend to color and hyperspectral images 
The feature detector discussed in Sections 2.1 to 2.3 is limited to processing 
monochromatic images. In order to detect faces in color or hyperspectral images, we pre-
process images by principal component analysis (PCA) and perform face detection on the 
most informative principal component (the first eigenvector). We choose PCA because 
face features detected by the proposed feature detector rely on spatial variations in a 
small neighborhood, and the first principal component provides the majority of spatial 
variations. The face detection algorithm described before can be applied without any 
modifications to the first principal component of the PCA transformed image. 

2.5 Experiments 
Due to the cost of acquiring a large number of face images, we gathered 3,000 face 
images and 5,000 non-face images as training data. Examples of these images are shown 
in Figure 4. Most of the face data were obtained from AT&T face database [13] and 
Sinica face database [14], in order to include face images from several races. The non-
face images are randomly collected from the Internet, in order to discriminate all kinds of 
background in face images. Each training image is of size 24 by 24 pixels with only one 
band (grayscale), and eight bits per pixel intensity (unsigned byte value). 

The training process is very time consuming and needs a lot of computation power. This 
is due to the computational complexity of learning from all features enumerated 
exhaustively for all training images. On the other side, the detection process can be done 
very efficiently, since it only relies on small number of features. 

In order to detect faces of varying size in images, most face detection systems usually 
scan every level of a multi-resolution image pyramid. Instead of resizing the size of an 
analyzed image, we resize the sub-windows for face feature detection, and adjusted 
parameters of a classifier based on pre-computed look-up table values. For example, if we 
choose a scale factor s  then the size of first detecting sub-window is 24 by 24, the second 
one is s⋅24  by s⋅24 , and the size of nth  sub-window is 124 −⋅ ns  by 124 −⋅ ns . The 
threshold for the strong classifier is just multiplied by a factor of 2s . 

Another advantage of using a single image instead of a multi-resolution image pyramid is 
the fact that the integral image tables for large testing images can be computed in advance.  

 

(a) (b) 
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Figure 4: Examples of face images that vary in human race, gender and facial expression (a). 
Examples of non-face images collected randomly from the Internet (b). 

A few experimental results of detected faces are in Figure 5. It is apparent from these 
examples that detecting faces in pictures with complex background is more error prone 
than in images with simple background. One way to improve the results is to collect false 
detections, and use them to train a new classifier with improved performance. Another 
way is to pre-process both training and testing images with histogram equalization to 
remove noise from light variation. We have also noticed that some detected face sub-
windows mutually overlap. This type of false detection can be removed by analyzing 
overlapping face sub-windows.  
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Figure 5: A few examples of face detections. The left-top image contains a sample white background 
and only one person in the scene. The right-top image has simple background and multiple persons, 
and the image quality is not very good. The left-down image contains a single person with the head 
orientation slightly away from the camera and with complex background. The right-down image 
contains multiple persons and complex cluttered background. 
For color and hyperspectral images, we use the first principal component of PCA for face 
detection. Figure 7 shows an example of face detection from a color image. It shows the 
original image, its principal components, and the result of face detection. We can notice 
that most of the face spatial details are preserved in the first principal component. 
 

  

 

(a) (b)  
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(c) (d) (e) 
 

Figure 6: Original color image (a); detected face region (b); the first principal component (c); the 
second principal component (d); the third principal component (e). 

  

3 Hand Pose Estimation 

Given an image bounding box that encloses a human face, we would like to further 
estimate the 3D head pose of the detected face. Pose estimation algorithms developed 
previously relied usually on spatial information or on motion cues [15]. In this section, 
we will investigate the use of spectral information for pose estimation. Due to the high 
complexity of human face appearance, we first reduced the head pose estimation problem 
to a human hand pose estimation problem.  

First, the problem of human hand pose estimation is approached by exploring the 
discrimination power of spectral information for human surfaces that are significantly 
different, for example, fingernails, skin on back of a hand and palm skin. Next, we 
explore the possibility of pose estimation using the directional change of spectral 
signatures per each human surface type. 

3.1 Hyperspectral Imaging 
Hyperspectral images provide ample spectral information to identify and distinguish 
spectrally unique materials. The word “hyper” refers to the large number of measured 
wavelength bands. In general, light interacts with an object and we are measuring the 
reflected radiation (electro-magnetic waves) at multiple wavelengths with a hyperspectral 
camera. A spectral wavelength of each wave is directly related to the energy level of 
photons as shown in Figure 7 [16]. Humans can visually perceive spectrum with 
wavelengths between nm300  and nm700 . 

 
Figure 7: The electromagnetic spectrum and its energy. 
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The hyperspectral camera used in our experiments operates in a spectral wavelength 
range [400, 1100] nanometers with two distinct spectral regimes, such as, visible [400nm, 
720nm] and near infrared [650nm, 1100nm].   Figure 8 shows an example of a 
hyperspectral image with wavelengths from the visible wavelength range. 

We considered near infrared (NIR) hyperspectral images for hand pose estimation since 
waves at this range have larger depth penetration than the waves from the visible 
wavelength range. We are looking for unique features that could be correlated with 3D 
pose and would be hard to conceal or modify. Thus, near infrared information could 
provide some subsurface skin characteristics that would be hard to conceal and modify by 
humans [12]. Figure 9 shows an example of a hyperspectral (HS) image with 46 spectral 
bands from the infrared wavelength range.  

 
Figure 8: A series of visible spectrum wavelength images from a hyperspectral image (or an image 
cube) after spectral calibration. The bands are displayed from the smallest to the largest wavelengths 
(shown under each image in [nm]). 
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Figure 9: A series of near infrared spectrum wavelength images from a hyperspectral image (or an 
image cube) after spectral calibration. The bands are displayed from the smallest to the largest 
wavelengths (shown under each image in [nm]). 
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In our experiments, we acquired hyperspectral images of the size 676 columns by 516 
rows. We analyzed only the spectral range between nm700  and nm000,1  due to the 
presence of a large amount of camera noise. In order to reduce the camera noise, we 
further down-sample the near infrared images by two. 

3.2 Hyperspectral Camera Calibration 
Raw hyperspectral images are calibrated first to obtain reflectance values. For calibration 
purposes, we acquired two additional images, such as, black and white images. The black 
image refers to near zero-reflectance image and is acquired with a lens cap on. The white 
image refers to near 100%-reflectance image and is acquired with a white calibration 
reflectance board in front of the camera at the distance of an imaged hand. 

 
Figure 10: Black (a) and white (b) calibration images acquired at the wavelength nm740 . 

 

According to [17], [18], image intensity at spatial coordinate ),( yx  and wavelength iλ  
can be modeled as 

),,(),,(),,(),,(),,( iiiii yxOyxRyxSyxLyxI λλλλλ += ,  

where ),,( iyxL λ  refers to the illumination, ),,( iyxS λ  refers to the system spectral 
response, ),,( iyxR λ  refers to the reflectance of the viewed surface, and ),,( iyxO λ  refers 
to the offset which includes dark current and stray light. For a white background image, 
the intensity of coordinate ),( yx  for wavelength iλ  can be modeled as 

),,()(),,(),,(),,( iiWiiiW yxORyxSyxLyxI λλλλλ += ,  

and for black background image, the intensity of coordinate ),( yx  for wavelength iλ  can 
be modeled as 

),,()(),,(),,(),,( iiBiiiB yxORyxSyxLyxI λλλλλ += ,  
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where )( kWR λ  and )( BBR λ  are reflectance functions for these two images. )( kWR λ  and 
)( BBR λ are theoretically independent of ),( yx , because the viewed surface has the same 

reflectance property for all image pixels. Raw black and white images are shown in 
Figure 10. We can notice that the intensity of white background image is not uniformly 
distributed within the image plane, and our goal is to compensate this non-uniformity. 

By using the equations for ),,( iW yxI λ  and ),,( iB yxI λ , we can derive  

)()(
),,(),,(

),,(),,(
iBiW

iBiW
ii RR

yxIyxI
yxSyxL

λλ
λλ

λλ
−
−

= , 

and plug it into the equation for ),,( iyxI λ . We then obtain a calibration equation provide 
below.  

),,(),,(
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),,(),,(
)()),,(),,((
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iWiBi
k yxIyxI

RyxIyxI
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−

−
+

−
−

= . 

Figure 11 compares images before and after calibration. We can observe that the raw 
images have low intensity values near the image border and have high intensity values at 
the image center, just like the white image in Figure 10. 
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Figure 11: Illustration of hyperspectral image calibration. Two images before calibration (left 
column or (a) and (c)) and after calibration (right column or (b) and (d)) that were acquired at the 
wavelength nm700 .  

3.3 Hand Detection  
In order to perform 3D hand pose estimation, we need to detect hand regions. In our 
simple experimental setup, this task was equivalent to identifying the background and 
foreground regions. To accomplish this task, we used a supervised classification 
technique known as the k-nearest neighborhood method. The need for a non-linear 
supervised classification method came from the fact that the hand and background 
spectral values were not linearly separable. However, this step could be simplified by the 
use of a simple thresholding method if one would use a highly absorbent background 
material. 

 

Given the high dimensionality of hyperspectral images, we investigated several metrics 
for comparing pixel similarity that are part of any classification algorithm. In our 
experimental study, we tried Euclidean Distance (ED) and Spectral Angle Mapper (SAM) 
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similarity metrics. The metric ED is also known as 2l  distance. Suppose there are two 
spectra [ ]naaaS ,,, 211 L=  and ],,,[ 212 nbbbS L= , then their ED is defined as  

2

1 2 1
( , ) ( )n

i ii
ED S S a b

=
= −∑ . 

The metric SAM is computed as a spectral angle between two spectra (or vectors) 
according to the equation below.  

)(cos),(
21

211
21 SS

SSSSSAM
⋅
⋅

= − , 

The smaller the spectral angle, the more similar the two vectors are. Spectral angles will 
be relatively insensitive to illumination changes. This property is due to the fact that 
increasing or decreasing pixel values in all bands (e.g., multiplying all coordinates of 
vectors) would change only vector magnitudes but would not change the directions of the 
compared vectors. 

We detect hand pixels and background pixels by using the k-nearest neighbor algorithm 
in two stages. In the first stage, we manually select a few pixels from a hand image region. 
Given a metric, image pixels are then labeled as follows. If a metric computed from a pair 
of pixels (one selected pixel and one pixel already labeled as hand) is less than a 
threshold then the pixel is marked as hand, otherwise the pixel is marked as background. 
In the second stage, manually select a few pixels that belong to the background or 
shadow regions of the hand object. For all pixels labeled as hand, modify their label to 
the background label if the metric evaluation computed from a hand labeled pixel and one 
of the manually selected pixels is less than a threshold. Finally, we blur the label image to 
obtain spatially contiguous foreground (hand) region. 

We compared ED and SAM similarity metrics visually. The results based on the ED 
metric appeared better than the results based on the SAM metric. This observation could 
be explained by the insensitivity of the SAM metric to illumination changes. Figure 12 
shows several masks computed by ED, where the white part represents hand areas, and 
the black areas correspond to background. 
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Figure 12: Original hand images (left column) and their label images (right column) identifying 
background (black) and foreground/hand (white). 

3.4 Spectral Analysis 
In this section, we attempt to separate hand skin and hand nail regions based on their 
hyperspectral information. First, we focused on choosing a metric that discriminates hand 
classes (nail and skin). Second, we investigated the use of unsupervised and supervised 
methods for nail and skin classification. 
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3.4.1 Metric Selection 
In order to classify pixels into the skin and nail classes, we must define an appropriate 
distance metric as a measure of feature similarity. We investigated two such distance 
metrics, and compared their discriminating power for nail and skin spectral features. 

We compared the discrimination power of Euclidean Distance and Spectral Angle 
Mapper as defined in Section 3.3 using a statistical hypothesis testing approach and four 
representative (randomly selected) patches from each class (nail and skin). We computed 
similarity measures according to these two metrics and reported the results in Table 2 (a 
and b parts). 

The statistical hypothesis testing follows the description in [19] and can be outlined as 
follows. Let us suppose that the similarity measure (or the distance) between two nail 
patches is a random variable following the distribution A; the distance between two skin 
patches is a random variable following the distribution B; and the distance between a nail 
patch and a skin patch is a random variable following the distribution C. For the 
Euclidean Distance metric ED shown in Table 2 (a), we obtained samples 621 ,,, xxx L  
from the distribution A, 621 ,,, yyy L  from the distribution B, and 1621 ,,, zzz L from the 
distribution C. Let us suppose that the distributions A, B, and C are all normal 
distributions, and share a common unknown variance 2σ . In order to test whether one nail 
region is statistically different from another nail region, we examine the following two 
hypotheses: 

CAH =:0  and CAH A ≠:  

Since we do not know the real variance 2σ  of A and C, we rely on the pooled sample 
variance ps : 

818,208,80
2

)1()1( 22

=
−+

⋅−+⋅−
=

nm
smsns CA

p  

where 6=n  and 16=m  are the number of samples from the A and C distributions. Next, 
we used the t-statistic value with 20)2( =−+ nm  degrees of freedom to test if two 
distributions are identical. The t-statistic value is 4.460246. The p-value is 99.976%. 
Based on these two values, we can conclude with a high confidence that the distribution 
A and C are different, and the hypothesis AH  is very likely to be true. Similarly, we 
computed the t-statistic value for the B and C distributions that is equal to 861.6607, and 
the p-value is almost equal to 1. We concluded that the distributions B and C are different. 
The main conclusion of this hypothesis testing is that the separation of nail and skin 
classes should be possible with a high confidence by using the ED metric. 

 
Table 2: Randomly picked representative regions of nail and skin classes. The values in the table are 
the similarity measures (distances) between sample means of a pair of regions. The table (a) contains 
values computed with the Euclidean Distance (ED), and the table (b) contains the Spectral Angle 
Mapper (SAM) values. The intra-class variance is greater then the inter-class variance for both ED 
and SAM. Nail 1 and Nail 2 sample regions contain more “shining” (highly reflective) parts of nail 
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than the Nail 3 and Nail 4 sample regions. Skin 2 and Skin 3 sample regions contain more 
“shadowed” (less reflective) parts of skin than the Skin 1 and Skin 4 sample regions. 

(a) 

ED nail 1 nail 2 nail 3 nail 4 skin 1 skin 2 skin 3 skin 4 

nail 1 0 25,779 25,663 31,012 27,808 37,702 33,990 21,553 

nail 2  0 21,200 20,700 45,012 56,297 50,675 38,878 

nail 3   0 19,160 41,703 50,785 43,485 38,030 

nail 4    0 48,166 57,664 51,009 42,961 

skin 1     0 20,802 18,602 17,937 

skin 2      0 15,930 25,821 

skin 3       0 23,101 

skin 4        0 

 

(b) 

SAM nail 1 nail 2 nail 3 nail 4 skin 1 skin 2 skin 3 skin 4 

nail 1 0.0000 0.2633 0.2591 0.3083 0.2103 0.2351 0.2645 0.1763 

nail 2  0.0000 0.3164 0.3109 0.3196 0.3645 0.3746 0.2891 

nail 3   0.0000 0.2875 0.2415 0.2283 0.2063 0.2678 

nail 4    0.0000 0.3078 0.3077 0.3027 0.2990 

skin 1     0.0000 0.1671 0.1740 0.1698 

skin 2      0.0000 0.1302 0.1955 

skin 3       0.0000 0.2094 

skin 4        0.0000 

 

By using the same statistical hypothesis testing approach, we computed the t-statistic and 
p-values for the Spectral Angle Distance metric. The p-value for the B and C distributions 
is 99.9506%. However, the p-value for the A and C distributions is 49.2445%, and 
hence 0H : A=C is more likely to be true, and the two distributions appear to be identical. 
We concluded that Spectral Angle Distance is not appropriate for separating nail from 
skin based on our statistical hypothesis testing. 

Overall, Euclidean Distance should provide better separation of skin and nail classes than 
Spectral Angle Mapper. Therefore, we use the ED metric with supervised and 
unsupervised classification algorithms. 
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3.4.2 Unsupervised Classification 
First, we use the Isodata Clustering to separate nail and skin materials. Isodata clustering 
is an advanced K-means unsupervised clustering algorithm [21]. Figure 13 shows the 
result of Isodata Clustering. Due to the fact that the intra-class noise is much greater than 
the inter-class distance, it is hard to classify skin and nail pixels using an unsupervised 
algorithm. We attempted to perform classification with a supervised algorithm. 

 

 

 

 

  
Figure 13: Isodata clustering cannot separate the nail from the skin. Instead, the two clusters are 
decided by the orientation of the hand to the light. 

 
3.4.3 Supervised Classification 
We choose the k-Nearest Neighbor Algorithm to classify nail and skin pixels. However, 
we obtained similar results as with the unsupervised Isodata clustering method. The 
results of supervised classification with the k-Nearest Neighbor Algorithm are shown in 
Figure 14. 
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Figure 14:  The results of supervised classification with the k-Nearest Neighbor Algorithm. The black 
region denotes skin and the white region is nail. 

The reason for failing to classify nail and skin with the supervised method can be 
attributed to the fact that all data in Table 2 are averaged (intra-class variance is reduced) 
and the supervised algorithm is classifying pixels with large intra-class variance. Without 
eliminating the inner-class variance, satisfactory classification is still not feasible. This 
leads to considering spatial information as it will be discussed in section 3.5. 

 

3.5 Spatial Analysis 
According to the Phong Illumination Model [20], the intensity of each wavelength is 
formed by three sources: (1) ambient light, (2) diffuse light, and (3) specular light, and 
can be modeled by the equation: 
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is the unit normal vector; L
v

is the unit light source vector; R
v

is the unit light reflection 
vector; and V

v
is the unit-viewing vector. aI and pI are the intensities of ambient light and 

point light sources respectively. ak , dk  and sk are the coefficient of ambient, diffuse and 
specular reflection. attf  is the light-source attenuation factor. dO and sO are the diffuse 
color and spectral color of the object. 

We can notice that specular light is powered by a factor n, and hence it demonstrates 
larger intensity variations than diffuse light. It is known that nail material reflects more 
light that than skin material for most visible wavelengths. This motivates our effort to 
separate nail image regions from skin regions by compute a sample variance over a small 
spatial neighborhood of pixels.  

Spatial variances over a small set of image pixels are calculated by introducing a round 
filter. The round filter is a filter that computes a sample spatial variance for every 
wavelength within a circular area. We obtain the output image, so called variance map, 
by convolving an original image with the round filter of a fixed radius. We also use the 
principal component analysis (PCA) technique described in Section 2.4 for finding 
regions that correspond to the overall hyperspectral image variance. 



Toward Face Detection, Pose Estimation and Human Recognition from Hyperspectral Imagery 

The results after filtering seem promising in terms of nail versus skin separation for small 
rotational angles. We conducted experiments with both visible and near infrared images, 
and visible images lead to more robust nail and skin separation for varying angular hand 
poses than near infrared images. 

(a) (b) 

(c) (d) 
Figure 15 : The first principal component of variance maps for four different hand pose angles. The 
images (a), (b), and (c) are views of the backside of a human hand and include nail regions.  The 
image (d) is the view of the palm of a human hand and it does not include nail regions. The four hand 
pose angles correspond to 0 degree (a), 60 degrees (b), 85 degrees (c), and 180 degrees (d).  We can 
notice that nail region can be distinguished easier at smaller angles.  

Figure 15 shows the first principal component of variance maps for four different hand 
pose angles. Images acquired at hand pose angles less than 30 degree usually have 
circular regions of high variance, for instance, nail regions in Figure 15 (a). These results 
appeared to be promising assuming that we would collect more hyperspectral hand pose 
images, and train an efficient classifier for separating nail and skin regions from the 
variance maps. 
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3.6 Discussion 
Based on our preliminary experiments of hand pose estimation approaches, we can 
conclude the following. The Euclidean Distance similarity metric is more appropriate for 
classification than the Spectral Angle Mapper similarity metric. Pixel-based spectral 
classification with unsupervised or supervised methods is not reliable for separating nail 
and skin classes because of large intra-class variations. Finally, nail and skin separation 
seems promising from variance maps that are based on a spatial filtering approach. By 
collecting more hyperspectral images of human hands, we might be able to compute their 
variance maps and train an efficient classifier for finding nail positions. Given the 
presence of nail regions and their relative 3D position with respect to a human hand (and 
2D projected shape computed by background segmentation introduced in Section 3.3), we 
may further estimate hand pose angles by exploiting the 3D spatial relationships among 
hand, fingers, and nails in the future.  

4 Summary 

We implemented a fast face detection system that can process multi-spectral images. We 
researched several approaches to hand pose estimation based on spectral and spatial 
analyses. We detected hand (foreground) in a background first, and then attempted to 
separate nail and skin regions using unsupervised and supervised approaches, as well as, 
spatial filtering. The preliminary outcomes of multiple approaches were summarized in 
Section 3.6. 

There are three primary future directions. First, we could improve the skin/nail 
classification by acquiring more hyperspectral images of human hands. We would then 
compute variance maps from these images and use their first principal component of PCA 
analysis to train a classifier for nail/skin separation. Second, we would model the 3D 
spatial relationships among hand shapes, fingers, and nail positions. We would use these 
relationships as inputs into our model for estimating 3D poses of human hands. Third, we 
would extend the hand pose estimation to human face pose estimation. A human face is 
much more complex than a human hand, since we would need to separate several 
materials including skin, lips, eyes, and hair. 
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