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Abstract

This thesis addresses the following problem: Given multiple images of a

scene, and sensor localization data, can we improve our knowledge of scene

geometry and sensor locations? A novel approach to improving three dimen-

sional scene geometry and sensor locations by fusing localization data from

wireless sensor networks (WSN) with depth maps obtained through stere-

opsis is presented along with a software prototype. In experiments, “smart”

wireless sensors, and a digital camera are used. Sensor locations are deter-

mined via an acoustic time-of-flight ranging technique, and the uncalibrated

depth map is computed using a binocular stereopsis technique. Depth map

calibration is performed (a) by fitting a three dimensional surface to a set of

a priori known co-planar sensor locations, and (b) by computing the depth

map calibration model parameters through minimizing the squared distance

between the sensor-defined plane and the corresponding depth map mea-

surements. Fusion is performed by analyzing the expected uncertainties of

the outputs from computational stereopsis and wireless sensor network lo-

calization techniques, and then by minimizing the uncertainty over a wide

range of depth values. Algorithms for computational stereopsis, sensor local-

ization, and depth map and sensor location fusion are presented, followed by

multiple experiments and obtained simulation and experimental fusion re-

sults. The contribution of the presented work is in building a first prototype

for improving our knowledge of scene geometry and sensor locations based

on camera and WSN data fusion using TinyOS and Image to Knowledge

(I2K) software tools. A summary of challenges with respect to automation,

computational requirements, and obtained accuracy of depth estimation is

included.
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) have captured the imagination of a large

number of people. Visionaries imagine a future where “smart dust” can

be deployed to gather interesting information quickly and cheaply. Today,

the technology for mass-produced, standardized, inexpensive sensors is still

young. Most research on wireless sensor networks is focused on the net-

work infrastructure; problems like communication protocols, security, and

localization.

This thesis presents work on a possible application of this infrastructure:

increasing the accuracy of determining a scene’s geometry. In addition to

improving the quality of this geometric data, this work also shows one way

of combining the output of wireless sensor networks with traditional sensors,

namely cameras. This fusion process, creating a unified model of the scene

from multiple kinds of sensors, can potentially contribute to a higher-level

view of sensing and hopefully drive future applications.

1.1 Problem Statement

This thesis addresses the following problem: Given multiple images of a

scene, and sensor localization data, can we improve our knowledge of scene

geometry and sensor locations? The answer is yes, as this thesis shows. We

discuss the relevant components of information acquisition: computational

stereopsis and WSN localization. The error arising in each 3-D information

recovery approach is derived as a function of scene depth. We utilize this

error to come up with a data fusion rule. Finally, we quantify the improve-

ment of our scene knowledge in a laboratory environment after applying the

fusion rule. A flow chart of the fusion process can be seen in Figure 1.1.
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Figure 1.1: Flow Chart of Stereopsis and Localization Fusion

1.2 Computational Stereopsis

Computational stereopsis is the problem of recovering the depth of a scene

from multiple 2-D images using a computer. If we consider the case of two

images, the images are referred to as a stereo pair. A depth map is a third

image with each pixel containing the distance from the corresponding scene

point to the camera’s image plane.

Chapter 2 reviews techniques that extract and calibrate a depth map

from a stereo pair. These stereopsis techniques allow us to use a camera

to acquire additional, possibly redundant, 3-D information from a scene

instrumented with a WSN.
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1.3 Wireless Sensor Networks

1.3.1 Definition of Terms

For the purposes of this thesis, a wireless sensor network is a collection of

sensors with the following properties:

1. Each sensor can operate under its own power

2. Each sensor has the capability to communicate with other sensors via

a radio link

3. Each sensor has computational resources, i.e. a CPU

4. Each sensor has small data storage capabilities

These sensors are commonly called motes in the literature and this con-

vention is retained. Wireless sensor networks are often mentioned in con-

junction with micro-electro mechanical systems (MEMS) as the recent surge

in novel MEMS sensors is well-aligned with the goals of wireless sensor net-

works: small size, the ability to be integrated in a single device, and low

power usage. As the problem this thesis addresses is independent of the

sensors used to collect data, no knowledge of MEMS is needed.

An example of a mote is the Crossbow MPR400 [14], commonly known

as the MICA2. The MPR400 uses add-on boards to perform the sensing

such as the Crossbow MTS420 [15]. The MPR400 and the MTS420 are

shown in Figure 1.2.

Figure 1.2: Crossbow MPR400 MICA2 Sensor and Crossbow MTS420 Sen-
sor Board

1.3.2 Applications of Wireless Sensor Networks

The obvious application of wireless sensor networks is large-scale data col-

lection, especially in regions where wired infrastructure does not or can not
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exist. This lack of wired infrastructure may be due to the temporary nature

of the site (e.g. a battlefield), or cost. For example, the authors of [3] note

that the costs of wiring are going to dominate the cost of sensing in the

long-term. Software such as TinyDB [44] has been developed which makes

this mode of operation a reality today and companies such as Dust Networks

[18] and Crossbow Technology, Inc. [13] are working to commercialize and

capitalize on this technology. One prominent example of large-scale data

collection is environmental monitoring, as described in [11] and [27]. The

WSN used in these applications is the same as in traditional environmental

sensing, only without wires.

A variant of the large-scale data collection applications utilizes the pro-

cessing capability of the motes to aggregate data and potentially make data-

driven proactive decisions. This proactive aggregation of data can poten-

tially reduce the amount of communication in the network, thereby reducing

the power requirements and increasing the network lifetime.

More recent and novel applications of WSNs seek to utilize the au-

tonomous character and small size of the motes. An example is [6] which

uses a WSN to calibrate thermal infrared (IR) images with in situ measure-

ments. Another emerging field is the development of “hazard-aware spaces”:

spaces that use WSNs to monitor and react to hazards (e.g. a fire) [7].

As applications move farther away from the basic “monitor and report”

paradigm, the sensor infrastructure becomes increasingly important. In-

frastructural software, similar to TinyDB [44], needs to be developed that

robustly solves other problems such as localization. Estrin et al. [19] gives

a nice overview of many areas of WSN research largely made possible by

the advent of TinyOS [45] which standardized the sensor research platform.

This thesis presents a prototype which may form the basis of such a system

seeking to integrate WSNs with traditional sensors such as cameras.

1.3.3 Limitations of Wireless Sensor Networks

Wireless sensor networks are still very young and inherently at the state-

of-the-art in many disciplines. There are many open problems related to

deploying WSNs [19], [1]. The mote power constraint, in particular, proves

to be challenging since it determines how long the motes and the WSN can

operate. Other factors that constrain WSN operation are: limited on-board

memory, a simple CPU, and a limited broadcast range.

On the WSN level, additional limitations appear: localization, the prob-

lem of determining the physical location of motes; time synchronization

4



between motes; reliable multi-hop message routing; and efficient communi-

cation protocols.

1.3.4 Localization in Wireless Sensor Networks

We are interested in the sensor localization problem, i.e. automatically

mapping sensors to the world at large. As an example, consider the wireless

sensor network deployment described in [26]. Sensors with known identifiers

(IDs) are affixed to large machines and vibration data is read from the

network. If a given sensor is registering an unexpected vibration profile, the

monitoring process/person knows which machine should be inspected. In the

more well-known Great Duck Island experiment [27], one sensor per nest of

birds was used in the monitoring. In both examples, the mapping between

sensor identifier and the item of interest is known. This thesis reports on

work that does not make the strong assumption of a known mapping between

sensors and locations.

1.4 Thesis Contribution

The contribution is in building a first prototype for improving our knowledge

of scene geometry and sensor locations based on camera and WSN data fu-

sion. This prototype is built on top of TinyOS [45] and Image to Knowledge

[2] and was used to generate all of the data in the remainder of this thesis.

The appendices describe the operation of this prototype. As is discussed

and quantified in chapter 4, this prototype system is able to increase our

knowledge of scene depth.

1.5 Thesis Outline

First, chapter 2 discusses computational stereopsis. A discussion of localiza-

tion in wireless sensor networks follows in chapter 3. The process of fusing

data from computational stereopsis with localization data is presented in

chapter 4 along with quantitative fusion results. Chapter 5 presents con-

cluding thoughts and areas for future research. Appendices discussing the

TinyOS [45] and Image to Knowledge [2] implementations of this thesis in

enough detail to replicate the results follow.
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Chapter 2

Computational Stereopsis

2.1 Introduction to Computational Stereopsis

Computational stereopsis is the problem of recovering the depth of a scene

from multiple two dimensional images using a computer. Various aspects

of this problem have been addressed in the past by many researchers in the

computer vision, machine vision and signal/image processing communities

[47], [16], [32]. The motivation for obtaining 3-D information often comes

from applications that require object identification, recognition and model-

ing. There is an abundance of research and industrial use of 3-D informa-

tion for (1) designing autonomous vehicle movement (collision avoidance and

path planning), (2) performing teleoperation of vehicles (industrial robots,

space rowers, aircrafts, and cars), (3) determining medical diagnosis with

non-invasive methods (MRI, CT, X-Ray, ultrasound), (4) modeling urban

sites for military or communication purposes, and (5) developing augmented

reality for training and telepresence.

2.2 Problem Statement of Computational

Stereopsis

Stereopsis is the construction of three-dimensional geometry given multiple

views of a scene as in [39], [40], [17]. Computational stereopsis is the science

of using computers to perform stereopsis. Figure 2.1, from [39], shows a

generalized stereopsis configuration. The cone on the checkerboard pattern

represents a scene. Points C1, C2, and C3 represent optical centers of

three [pinhole] cameras. I1, I2, and I3 represent the image planes of these

cameras: the inputs to a stereopsis algorithm. In the general case, the

stereopsis problem can be posed as the reconstruction of the scene geometry

given the two-dimensional data (images) I1, I2, I3, . . . , In.
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Figure 2.1: Generalized Stereopsis Configuration from [39]

A simplification of the general stereopsis configuration is the case with

two images at a time. As it is readily apparent from Figure 2.1, the 3-D

reconstruction of a scene point is straight forward given matching points on

the images. The scene point can be calculated as the intersection of the

two lines passing through the matched points and the optical centers. With

known camera parameters, this setup reduces computational stereopsis to

a problem of image matching. Some stereo image matching techniques are

described in more detail in section 2.5.

A natural question to ask is: What can be determined if camera pa-

rameters are unknown? The reference to camera parameters includes both

intrinsic (e.g., lens distortions) and extrinsic (e.g., camera position) param-

eters. The intrinsic parameters are usually estimated from specification

sheets provided by camera manufactures while the extrinsic parameters are

controlled during the image acquisition, for example, by using stereo-rigs

[40]. We do not consider the case of unknown intrinsic parameters and we

deal with the case of unknown extrinsic parameters only. Unknown extrinsic

parameters naturally occur when using images taken from unknown scene

positions. Not having to rely on stereo rigs or precisely placed cameras is

7



important in the “real world” as existing cameras are not likely to be of

this type or need to be mobile (e.g. security cameras). It is well known

that without extrinsic parameters, stereopsis can still extract scene depths,

albeit not to scale [17].

2.3 Related Work on Computational Stereopsis

The stereopsis component of our fusion system is a “pair” of visible spectrum

cameras created by precisely moving a single camera to image a stationary

scene. Contrary to wireless sensor networks (WSNs), cameras are viewed

as traditional sensors and have proven to be reliable, relatively inexpensive,

and suitable for collecting a dense set of measurements (a raster image)

from their environment. Many techniques have been developed in the past

two decades that can extract shape information from images and video [47].

For example, Pankati and Jain in [35] cover extracting shape from multiple

cues. Many applications of computational stereopsis exist including object

recognition, room geometry determination for robot path planning, extrac-

tion of land elevation from aerial photographs, and investigations into the

human visual system brain [32]. In our work, we focus on stereopsis using

two images to derive a depth map.

2.4 Stereo Rectification

In this section, we focus on the special case of stereopsis without knowledge

of extrinsic camera parameters. In this case, it is useful to perform “stereo

rectification” on the images prior to attempting image matching. Stereo

rectification is a process which aligns one of the images (taken to be the

right image of a stereo pair in this thesis) such that matching points in the

resulting images are on the same “scanline” (image row or y-coordinate).

The resulting images form a “rectified stereo pair” that corresponds to a

configuration with cameras displaced purely horizontally from each other

(see Figure 2.2).

Stereo rectification serves two main purposes. First, it simplifies the

geometry of the stereopsis problem tremendously. In the rectified images,

everything can be expressed in terms of disparity, namely the distance be-

tween pixels in one image and the matching pixels in the other image (Figure

2.3). In general, each image point may have a unique disparity associated

with it which is inversely proportional to the depth of that image point in the

scene. The second, and perhaps more important, purpose of stereo rectifica-
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Figure 2.2: Stereo Rectification

tion is that the image matching task is simplified by using rectified images.

If the rectification is successful, then the correct match for any pixel in an

image would be found along the same scanline in the other image, and hence

reduce a two-dimensional search per pixel to a one-dimensional search.

Figure 2.3: Definition of Disparity using Tsukuba Stereo Pair [41]

We decided to follow the approach proposed by Hartley in [22] and im-

plement the algorithm as one of the Image To Knowledge (I2K) software

tools [2]. Hartley’s technique allows us to find a “matched pair” of recti-

fying homographies (perspective projections), such that the epipole of the

right image is mapped to infinity and epipolar lines in both images are equal.

Isgro and Trucco describe an implementation of Hartley’s approach in [28].

Instead of finding and mapping the epipole manually (as Hartley suggests),

Isgro and Trucco recognize that the fundamental matrix from a rectified pair

of images is:
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F =









0 0 0

0 0 −1

0 1 0









(2.1)

They then propose using pairs of matched image points to numerically

compute the homographies using the Levenberg-Marquardt [36], [31] and

standard linear least-squares algorithms. The former is used to minimize

the following cost function:

F (H1,H2) =
N
∑

i=1

[(H2p2i
)T FH1p1i

]2 (2.2)

The latter is used to minimize:

N
∑

i=1

[(H1p1i)x − (H2p2i)x]2 (2.3)

Minimizing this equation ensures that the rectified x-coordinates of the

images are not displaced “too much” (i.e. that the image will not be ripped

apart by the first constraint). Any pair of homographies satisfying these

equations is sufficient, but we choose a pair of homographies so that H2 is

constrained to be a rigid transformation about a point in space.

To rectify an image pair, we just reproject the second (“right”) image

using:

p′
2 = H−1

1 H2p2 (2.4)

We have implemented this approach in the Image to Knowledge Stere-

oRectify tool accessible through the Stereo Tool from the main menu (see

the documentation on Stereo in [2]). Matching image points are currently

specified by hand, as automatic image point/feature matching is another

area of research beyond the scope of this thesis.

Figure 2.4 demonstrates the functionality of the stereo rectification tool

implemented in I2K. The top set of images is an unrectified image pair. The

second set of images has the rectified “right” image. The colored lines have

been overlaid on the same scanlines in both sets of images. As an example,

one can look at the top line across the images. This line has been selected

to intersect the sprinkler head in the left image of both pairs. By comparing

the distances between the sprinkler head and the magenta line in the right

images, one can obtain better understanding of what the stereo rectification

algorithm accomplishes.
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Figure 2.4: Stereo Rectification Example

A practical problem in the stereo rectification algorithm implementation

is its sensitivity to the trivial solution of zero. The Levenberg-Marquardt

numerical technique that is used is akin to a sophisticated gradient descent.

A local minimum is desired, but the global minimum of zero is easily reached

and has strong influence in practice. The rectified image displayed above,

although improved in some ways, exhibits some behavior which can be at-

tributed to this problem. Visibly, the column on the left side of the image is

skewed in the rectified image more than one would expect for a simple, hor-

izontal camera translation (the model that the rectified image pair should

mirror). This, in turn, can mislead the image matching techniques discussed

in section 2.5.1. Robust, automatic stereo rectification, although it would

be useful, still appears to be a hard problem worthy of additional research.

In the absence of a rectified image pair, one can design the system to pro-

duce pre-rectified image pairs. Using a single camera mounted on a tripod,

this is accomplished by moving the camera such that the stereo pair image

planes are coplanar. The experimental results presented in this thesis use

this approach.
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2.5 Stereo Image Matching

Once a stereo image pair has been rectified, as in section 2.4, the problem

of computational stereopsis becomes one of image matching. We want an

algorithm that takes a pixel in one image and efficiently finds the pixel in

the other image which corresponds to the same scene point. As defined in

2.4, this difference is the disparity and is inversely proportional to the depth

of the scene point:

zscene =
α

disparity
(2.5)

There are cases where the disparity is undefined, e.g. a point that is

occluded in one of the stereo images. These issues are discussed in section

2.5.1.

There are two predominant approaches to the stereo matching problem:

correlation, and graph cuts. Correlation matching is simple in theory and

can be described as follows. For each pixel in the left image, find a matching

pixel along the same scanline in the right image by comparing two windows

centered on the selected pixels using a correlation metric [10]. This scheme

can be modified by (a) using adaptive windows, further limiting the search

space along the scanline, or (b) doing the search in a multiscale fashion [24].

These modifications generally aim to increase the speed or robustness of

the match. See section 2.6 for details on the modifications implemented to

the correlation algorithm used in I2K. The main disadvantage of correlation

matching is that every pixel fends for itself. This generally leads to good

matches along each scanline, but can lead to inter-scanline discrepancies and

errors (e.g. jagged edges of objects).

Graph cut matching is similar to correlation matching in that a similar

distance metric is used to decide what a good match is. Unlike correla-

tion matching, graph cut techniques look to minimize global “costs” and

can therefore penalize inter-scanline discrepancies. Briefly, graph cut meth-

ods formulate the stereo matching problem as a graph theoretic maximum

flow problem. Solving the flow problem (using a known algorithm such as

Edmunds-Karp [12]) also gives a depth map solution that minimizes a global

cost given a penalty weight. The advantage to graph cut techniques is that

they have produced one of the best computational stereopsis results to date

[41]. The disadvantage of graph cut algorithms is their computational com-

plexity: they are time-consuming relative to correlation (e.g. an execution

can take many minutes for a single stereo pair).
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2.5.1 Limitations

Regardless of the image matching technique used, the main obstacles to

successful stereo matching are scene occlusions and mismatches.

The problem of occlusions arises from regions of the stereo pair that

are absent from either image. The algorithm for stereo matching cannot a

priori determine occluding regions, so matching errors are highly likely in

these regions. There has been considerable research towards identifying and

handling occluding regions [10], but these discussions are beyond the scope

of this thesis. A simple strategy to detecting any occluding regions is to

run stereo matching twice, the first time searching for matches to the left

image and the second time searching for matches to the right image. If the

two runs agree on disparities, the result is kept. If the two runs disagree on

disparities, the result is thrown out and considered to be in an occluding

region.

Stereo mismatches can also occur when the image matching is not a one-

to-one problem. This is very likely to happen if the scene does not contain

any visually salient features (it could be called a visually “boring” scene),

namely scenes which have wide areas with absolutely no details to match

against (e.g. a white wall with even lighting), or scenes with man-made

objects exhibiting regular patterns (e.g. textured areas, or similar features

like the windows on a skyscraper in 2.5). In all of the preceding cases, a small

distance between [image matching] windows can mistakenly be classified as

an incorrect match. A large number of incorrect matches will generally

produce useless output. Using techniques discussed above to reduce the

search space can help eliminate the effects of “boring” scenes. Similarly,

global techniques, such as stereo using graph cuts, will avoid these problems.

Global techniques would converge on a global minimum to promote the

correct matches if given enough context. Other than these techniques, there

is little that can be done algorithmically. One technique that does work

in practice is to introduce texture into a scene (e.g. with large amounts of

newspaper, or similar non-regular textures). We have used this method in

some of our experiments with favorable results.

2.6 Implementation in Image to Knowledge

In Image to Knowledge [2], we implemented a multi-scale, correlation-based

stereo image matching technique. It is implemented in the Stereo class and

is accessible through the Stereo Tool interface. The correlation technique we

13



Figure 2.5: A hard-to-match object due to repetitive similar features (win-
dows)

use was proposed by Hirschmuller in [24] and differs from straight-forward

correlation in its use of an adaptive window shown in figure 2.6. The adap-

tive window is really composed of five windows. The “main” window is

the red window in the center of the figure. It is surrounded by four off-

set “secondary” windows. The final correlation is computed by summing

the correlation value from the “main” window with the correlation values

from the two best “secondary” windows. This approach is used with the

left-right consistency check described in section 2.5.1 to identify occluded

regions. All together, this algorithm corresponds with steps 1 through 4 of

Hirschmuller’s algorithm in [24]. As shown in [24] and [41], this algorithm

performs fairly well when compared with other stereo algorithms, especially

those based on correlation, on reference stereo pairs. This algorithm is also

termed as “real-time” in [24] and [41], although it is not in our implementa-

tion. The graph-cut algorithms, while producing higher quality results, are

much harder to implement and have long running times. We did not use

them in this thesis because of these reasons.
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Figure 2.6: Adaptive Correlation Window

Results from our stereo image matching follow in Figures 2.7 through

Figure 2.10. The first two images in each figure are the stereo pair input

to the algorithm (some of which are rectified, some of which are not). The

third image shown in each Figure is a depth map, the inverse of the disparity

map, either in grayscale, or pseudo-color (if hard to see otherwise). Note

that black (grayscale) or dark blue (pseudo-color) represents those pixels

which are of unknown depth (i.e. those that failed the left-right consistency

check). The fourth image, if present, represents the “ground truth” data.

We will come back to depth map calibration and the validity of the results

in section 2.7.
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Figure 2.7: Synthetic Images. Top Left and Top Right: The input [rectified]

stereo pair generated with POV-Ray, Bottom Left: Ground truth depth map

generated with POV-Ray (white: far from viewer, dark: close to viewer),

Bottom Right: Pseudo-color computed depth map (black: invalid, cool:

close to viewer, warm: far from viewer)

Figure 2.8: Measured Stereo Images (“Sawtooth”) from [41]. Top Left and

Top Right: The input [rectified] stereo pair, Bottom Left: Ground truth

depth map obtained from [41] (white: close to viewer, dark: far from viewer),

Bottom Right: Computed depth map (white: far from viewer, dark: close

to viewer)
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Figure 2.9: Measured Laboratory Images (Room without Added Texture).

Left and Middle: The input [rectified] stereo images, Right: Computed

depth map (black: invalid, cool: close to viewer, warm: far from viewer)

Figure 2.10: Measured Laboratory Images (Room with Added Texture).

Left and Middle: The input [rectified] stereo images, Right: Computed

depth map (black: invalid, cool: close to viewer, warm: far from viewer)

2.7 Depth Map Calibration

The image matching step, discussed in section 2.5, leaves us with a disparity

map. Equation 2.5 shows us that if we invert each element of the disparity

map, we will obtain a scaled depth map. This section solves the problem

of finding the correct scaling. In order to be more general and allow for

systematic errors in the determination of the disparity map, we also allow

for an offset in the fit, namely:

zscene = αzdepth map + β =
α

disparity
+ β (2.6)

We next assume that we have a set of known, coplanar points in the

image corresponding to known points in the scene. The points in the scene

are trivially coplanar as well. In general, one would desire to identify a large

plane, both in terms of points on it, and in percentage of image covered.

Techniques for finding a planar subset in a collection of 3-D points exist in

the literature, for instance [34]. In this thesis, we manually select points
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from the stereo pair that lie on a plane in a world coordinate system defined

by the left camera.

We continue by finding the parameters of the plane in 3-D that fits the

“world” coordinate locations using a linear least squares approach and min-

imizing the squared error in z (the axis perpendicular to the image plane).

We fit the plane ax + by − z + d = 0 to the real-world coordinate locations.

Using the computed plane parameters (a, b, d) we then make the substitu-

tion for zscene using Equation 2.6 and solve (in a linear least squares fashion)

the resulting problem over all known points to obtain α and β. At this point

the depth map can be calibrated and the results compared against what is

known.

The above technique, using manually specified points, has been imple-

mented in the Image to Knowledge Stereo Tool.

2.7.1 Depth Map Calibration Results

Section 2.7 covered the implementation of the fusion algorithm used in Image

to Knowledge. Section 2.7.1 details our evaluation methodology for this

algorithm. The quantitative results from our experiments are reported in

section 2.7.1.

Methodology for accuracy evaluations

Ultimately, we measure our fusion performance by the accuracy of the re-

sulting depth map relative to a ground truth depth map. In practice, the

ground truth depth map is generally not available, or is very difficult to

obtain. The situation is a bit different in our experimental setup as we have

the ability to acquire ground truth measurements. We conducted experi-

ments with theoretical/synthesized stereo pairs and actual/measured stereo

pairs. In the synthetic image case (e.g. Figure 2.7), we can generate a dense,

theoretically correct depth map. In the real-world cases, we do not have the

luxury of a dense depth map and must resort to a relatively small set of

points at hand-verified distances.

Another issue is the error metric for comparing ground truth depth maps

with estimated depth maps. We consider two error metrics: (a) the average

absolute distance error for each pixel/hand-verified point, and (b) the aver-

age absolute distance error as a percentage of maximum measured range in

the image. Both values decrease with more accurate calibration (fusion) and

are asymptotically optimal (zero). The accuracy evaluation methodology for

each set of input images is outlined next.
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Methodology for Synthetic Images

1. Create a synthetic stereo pair

2. Compute a theoretical depth map based on the geometry of the scene

3. Compute an uncalibrated depth map zdepth map from a stereo pair of

images using the I2K Stereo Tool

4. Using four points from step 2 that fall in a plane, calibrate the depth

map from step 3 using the I2K Stereo Tool to obtain zscene based on

Equation 2.6

5. Compute the average absolute distance error using all image points

(perhaps excluding a border of a given width)

6. Compute the average absolute distance percentage of maximum mea-

sured range. The maximum distance of the points from step 2 is “Max

Range” and we use: Error % Max Range = Avg. Abs. Distance Error
Max Range

∗100%

Methodology for Real Images

1. Take a stereo pair of a real scene

2. Record manually distance measurements to N points (N > 4) in the

scene. Four of these points will be used for calibration and should

lie in a plane. One point should represent the maximum range of the

image (used in step 6)

3. Compute an uncalibrated depth map zdepth map from a stereo pair of

images using the I2K Stereo Tool

4. Using the four points from step 2, calibrate the depth map to obtain

zscene based on Equation 2.6

5. Compute the average absolute distance error using all points from step

2: Avg. Abs. Dist. Error = 1
N

∑

i∈points |zscene − zground truth|

6. Compute the average absolute distance percentage of maximum mea-

sured range. The maximum distance of the points from step 2 is “Max

Range” and we use: Error % Max Range = Avg. Abs. Distance Error
Max Range

∗100%
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Table 2.1: Results obtained for a synthetic stereo pair consisting of a single
plane perpendicular to the camera

Number
of

Points

Scale
α

Offset
β

Avg.
Absolute

Dist.
Error

Maximum
Image
Range

Error %
of Max
Range

Scale
Only

57408 0.616 N/A 0.512 12 4.26%

Scale
and

Offset

57408 -0.702 19.925 0.054 12 0.45%

Computational Stereopsis Results

We performed a number of different experiments in order to evaluate quanti-

tatively the accuracy of results as a function of scene texture and calibration

model complexity. Specifically, we conducted experiments that change the

amount of texture in the scene (which affects the quality of the stereo out-

put). We also include results which have been calibrated using only “scaled”

depth maps (assuming). We observed that the calibration results under the

assumption of led to smaller error in some cases, seemingly due to the sen-

sitivity of calibration to the quality of the plane fit.

Figure 2.11: Synthetic Plane. Left and Middle: The input [rectified] stereo

pair generated with POV-Ray, Top Right: Computed depth map (pseudo-

color)

As an algorithm test, we generated a synthetic stereo pair (Figure 2.11)

consisting of a single plane perpendicular to the camera (e.g. a normal point-

ing along the z-axis). The generated stereo images are of size 512 by 384.

We fitted a plane to four image points, as before, and verified that the fitted

plane had a normal along the z-axis regardless of the specific implementation

of a stereo method. The scale and offset factors differed, however, leading

to differing errors in the calibrated depth map. Our results (excluding a

border of width 100 pixels, 70% of the image area) are summarized in Table

2.1.
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Table 2.2: Calibration Evaluations

Stereo Pair
Number

of
Points

Avg.
Absolute

Dist.
Error

α 6= 0, β 6= 0

Avg.
Absolute

Dist.
Error

(“scaled
only” or
β = 0)

Maximum
Image
Range

Error % of
Max

Range
(Scale and

Off-
set/Scale)

Synthetic
(Figure 2.7)

17808 7.664 2.731 12
63.8%
22.76%

Untextured
Room
(Figure 2.9)

15 1.771m 2.546m 7.7m
23%

33.1%

Textured
Room
(Figure 2.10)

15 1.269m 1.412m 7.7m 16.5%
11.8%

During testing with real stereo pairs, the phenomenon of near-zero scal-

ing factors occurred numerous times, creating very large calibration errors.

We believe this arises due to overfitting of our calibration points. The errors

in the chosen points allow for a local minimum “fit” that is just their av-

erage (i.e. purely an offset), rather than a purely scaled, or mixed solution

that approaches the global minimum error. Theory predicts that scaling is

the only operation needed to achieve the global minimum, so incorporating

this a priori knowledge into the fitting step is the “correct” thing to do.

In real and synthetic stereo pairs, scaling does not always produce better

results. The cases where this occurs are the same cases where stereopsis

fails, specifically with regions that lack texture. Fortunately, both “scal-

ing” and “scaling and offsetting” result in empirically similar numbers when

considering feature points in real, textured scenes (e.g. Figure 2.10): our

target application. We present both figures in our calibration results shown

in Table 2.2.

Interestingly, we find that performance with measured images is better

than performance with synthetic images in terms of distance accuracy as a

percentage of maximum image range, a useful measure of calibration accu-

racy. We attribute this to the simplicity of our synthetic scene compared

with the complexity of the actual room, and to the large depth discontinu-

ities within the chair object (e.g. chair rungs) which significantly contribute

to error. In the actual room, especially in the textured case, there are more

unique “textures” that the stereo algorithm can match against resulting in

a better depth map. Performance is better in the textured room than in

the untextured room for the same reason. Another reason for the difference
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between the synthetic and measured performance is due to the density of

ground truth points. In the actual room, we measured only certain, “easily

identifiable” points, while in the synthetic scene we knew 3-D locations of all

image points. Stereo image matching does very well with distinctive points

thereby biasing our comparison in favor of the real scenes.

We do not have data on how these range estimates compare with range

estimates obtained with calibrated cameras (i.e. when the intrinsic and

extrinsic parameters of both cameras are known). We leave this comparison

as an area for future research.

2.8 Derivation of Depth Uncertainty

In order to make an informed data fusion decision, a model of the depth

uncertainty from computational stereopsis must be formed.

The central relation in computational stereopsis relates the depth of

points in the scene to the disparity (the output of the image matching step)

between the stereo images. Specifically, for our setup this relation is:

zscene =
α

disparity
+ β (2.7)

We can consider the perfect disparity to be a real number dispideal,

however our image matching algorithm only determines matches at pixel

granularity. Additionally, the image matcher is not perfect and has an av-

erage error of dispm.e.. This means that the disparity we actually use for

computation falls in the range:

(bdispidealc − dispm.e., ddispideale + dispm.e.) (2.8)

If we assume that the disparities we use in calculations fall uniformly

across this range, we find that the average distance error is:

errordist =

α
bdispideal−dispm.e.c

− α
ddispideal+dispm.e.e

2
(2.9)

Since we obviously never know dispideal in practice we make the ap-

proximation that dispideal = dispdepth map. The latter is determined using

Equation 2.7. The important thing to note about Equation 2.9 is that it

is an increasing function of depth. This makes sense since in the limit, as

zscene approaches ∞, disp approaches 0. Since we rely on the disparity to

discern depth, we expect to see low error where we can measure the most

disparity and vice-versa. Hence, stereopsis is theoretically more accurate
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closer to the camera, than farther away.

This relationship is explored in detail in [25] and is shown graphically

in Figure 2.12. Stereopsis can be viewed as a mapping from each point in a

stereo pair to one of the regions shown in Figure 2.12. The region close to

the camera, marked by A, has much less depth uncertainty than the region

farther from the camera, marked by B. This relationship will be compared

with the localization error function in section 3.6.

Figure 2.12: Stereo Uncertainty versus Distance from Camera
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Chapter 3

Sensor Network Localization

3.1 Introduction to Sensor Network Localization

Sensor network localization is a technique central to sensor data fusion as

it gives us a way to get sensor locations from within the sensor network.

Section 3.2 describes the problem of sensor network localization. Major ap-

proaches to sensor network localization are considered in section 3.3. Rang-

ing techniques, a common way to perform distance measurements inside a

sensor network, are discussed in subsection 3.3.1. Section 3.4 details the im-

plementation of localization within TinyOS and Image to Knowledge. Steps

to calibrate the point-to-point localization results are given in section 3.5.

Section 3.6 shows the empirical relationship between point-to-point ranging

error and localization error.

3.2 Problem Statement of Sensor Network

Localization

Sensor network localization is the problem of finding out the locations of

all sensors in a wireless sensor network. Depending on the application, the

localization problem can take many forms. For instance, in MIT’s Cricket

application [33] localization is used to identify the room (or part of a room)

that some sensor is in. This can be used for (a) service discovery, (b) enabling

functionality (e.g. environmental control), or (c) providing functionality

based on the high-level location of the device.

For the applications considered in this thesis, we are interested in know-

ing the coordinates of the sensors in space relative to a coordinate system

defined by the position of one of our stereo cameras. In our implementation,

the global coordinate system is centered on the left stereo camera.
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3.3 Related Work to Sensor Network

Localization

There are two major approaches to sensor network localization. The first

approach relies on existing localization infrastructure, such as GPS. In this

scenario, each mote in the network carries a GPS receiver [15]. The mote’s

GPS receiver receives satellite broadcasts in order to find its global coor-

dinates (i.e. latitude and longitude). The motes then convert these global

coordinates into local coordinates relative to a chosen coordinate system.

The major advantage of this localization system is that it is based on very

solid technology. Current (2003) consumer GPS receivers, such as the Lead-

tek GPS-9543 [30], provide an accurate measurement to within 5m using

differential GPS techniques. The cons of this approach are cost, power con-

sumption, fine-grained accuracy and areas not covered by GPS. The cost

primary derives from the GPS receiver and antenna. These costs will pre-

sumably drop over time, but not relative to the cost of MEMS sensors. The

power consumption comes from the radio (and currently an additional pro-

cessor) that is needed to receive the GPS signal. Since a GPS receiver needs

to be active (powered) for a bit while locating and tracking satellites, this is

not a battery-friendly operation. There are many areas that do not receive a

GPS signal, notably almost any indoor location. Finally, 5m accuracy may

be fine on a global-level, but is not very useful on a laboratory-scale. Other

localization techniques that rely on infrastructure exist (e.g. triangulation

from cell phone towers, beacons similar to those used in MIT’s Cricket,

etc. . . ) and have similar tradeoffs.

The second approach to sensor network localization does not rely on

external infrastructure. Instead, motes in the network attempt to locate

themselves relative to neighboring motes. This “relative localization” can

be done in a number of ways. One straight-forward way is ranging, namely

using a technique to find the Euclidean distance between two motes. In this

thesis, we focus on the relative localization approach.

3.3.1 Ranging

There are a number of ways to perform ranging as summarized in [23].

The most common [active] techniques are direct measurement, phase-based

techniques, and techniques based on time of flight (ToF). Direct measure-

ments are useful in static sensor deployments with few motes. Nonetheless,

they become unpractical very quickly if not impossible due to time/location

constraints. Phase-based techniques utilize multiple signals with differing
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wavelengths and infer the distance based on phase differences between the

received signals. Time of flight ranging is based on measuring the time of

signal propagation and using knowledge of propagation speed to compute

the distance to the object. An overview of these ranging techniques in terms

of accuracy and system implementation is provided in Table 3.1.

The Crossbow MICA platform with the MTS300 sensor board, has lim-

ited ranging capability. Specifically, the only ranging capable hardware con-

tained is a sounder, microphone, and tone detection circuit. The sounder

and tone detection circuit are both tuned to 4 kHz which limits the prac-

ticality of all but the time of flight approach. Some research groups have

experimented with custom sensor boards outfitted with ultrasonic transduc-

ers as ultrasound is a more traditional/refined market for ranging hardware.

Good results using ultrasound ranging have been reported in [5] and [48]. We

may investigate this technology in the future when it enters the commercial

sensor board market.

Table 3.1: Ranging Techniques

Technology
Example

Implementing
System

Reported Accuracy

GPS Leadtek GPS-9543 [30] 5m
Laser Phase-based

Rangefinder
Acuity AccuRange

4000 [43]
0.003m

Ultrasound Time-of-Flight ActiveBats [5] 0.03m
Acoustic Time-of-Flight Calamari [48] No Longer Available

Ranging Based on Acoustic Time-of-Flight (ToF)

As mentioned in section 3.3.1, acoustic time-of-flight ranging is both an

accepted and easily implemented ranging technique. This section details the

strategy of acoustic time-of-flight ranging we implemented (see Figure 3.1 for

a diagram). The first step is to send a message to a ranging endpoint node.

The endpoint node, after receiving the message, simultaneously broadcasts

a radio ranging message with a 4 kHz chirp. Every node in the network is

configured to listen for the radio ranging messages and starts a timer which

stops when the audible chirp is heard. A broadcast message announcing the

distance between the endpoint and receiving nodes is then sent for all who

are interested.

Ranging is possible in this setup due to the differential in radio transmis-

sion speed (governed by the speed of light, the radio stack, and system-level

issues) and the speed of sound in the sensing environment (we use 346.65
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Figure 3.1: Acoustic Time-of-Flight Ranging

m/s for our experiments which corresponds to the speed of sound in air at

25 degrees Celsius). The granularity of the timer on the receiving nodes

primarily dictates the uncertainty in the ranging estimates.

As mentioned in section 3.2, the goal of sensor network localization is to

find the spatial coordinates of all the sensors in the network, not the set of

ranges between sensor pairs. Theoretical work in converting ranging data

into a set of locations was done in [37] and is briefly discussed in 3.3.1.

One Dimensional Localization

As the main contribution of this thesis is on the fusion, not the localization,

simplifying assumptions have been made. We call our most restrictive set of

assumptions for localizing n motes labeled 0..n− 1 the “rigid string approx-

imations” as it assumes the distances between consecutive motes are known

exactly:

1. [Rigid String in 1-D Assumption] We know precisely all [Euclidean]

distances from a given mote i to a mote i − 1.

2. We have ranging estimates, possibly with error, of Euclidean distances

between mote i and motes i − 2 and i − 3 for all i.

3. We know the location of mote 0 and mote 1 (we assume mote 1 is

just horizontally displaced from mote 0 by the distance known from

assumption 1).
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4. We assume that mote 2 is not below the horizontal line given by motes

0 and 1 (this is needed since we don’t know the distance between mote

2 and mote -1: mote -1 does not exist!).

The following derivation of localization under these assumptions is shown

since, (a) unlike the techniques in 3.3.1 it is deterministic and guaranteed to

converge, and (b) it gives some insight into the challenges faced in converting

ranges to locations.

There are two cases that we see. Note that in the following figures, the

motes are labeled as 0, 1, 2, and 3. These numbers represent adjacent motes

and should be considered as motes i − 3, i − 2, i − 1, and i respectively

(keeping the i notation makes the derivation messy). We always know the

locations of motes 0, 1, and 2 and seek the location of mote 3.

Figure 3.2: One Dimensional Localization: Case 1

Figure 3.2 and Figure 3.3 show the two cases we see with valid localiza-

tion data. From the law of cosines, we get:

α = arccos

(

B2 + C2 − A2

2BC

)

(3.1)

From basic right triangle trigonometry we get:

γ = arctan

(

dy21

dx21

)

(3.2)

Now we have two choices for β: β = α + γ and β = α − γ for case 1

and case 2 respectively. To decide, we use d03 to see which choice gives us a
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Figure 3.3: One Dimensional Localization: Case 2

smaller localization error (i.e. we compute our resulting d03 and compare it

to the “known value” which will, in general, have error). In the case where

the errors are equal, the case 2 value of β is preferred (this can be partially

justified by “gravity” arguments as it is a state with lower potential energy

for mote 3). Finally, we compute the location of mote 3:

P3 = (P2x + d13 cos(β),P2y + d13 sin(β)) (3.3)

There are cases, due to errors in localization, where the triangle “col-

lapses” and can not be solved. In this case, we pick:

P3 = (P1x + d13 + d23,P1y) (3.4)

Multidimensional Localization

The multidimensional problem is not always solvable, but the pathologic

cases tend not to appear in practice [37]. The authors of [37] frame the

problem in a graph theoretic manner. Let each mote be a node, and let the

average ranging distance between motes be the undirected edge lengths. If a

three dimensional embedding of the above graph exists and is globally rigid,

we have a valid solution to the localization problem. The approach suggested

in [37] to find such a solution has two steps: first the graph is “unfolded,”

then an iterative, “mass and spring” graph relaxation technique is used. The

“resting lengths” of the springs are the ranging distances, so the solution
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will even handle errors in ranging by converging to a “minimum energy”

configuration.

We use a modified version of this algorithm that does not include an

“unfolding” step. Specifically, we fix the location of the first mote at (0, 0, 0)

and assign all of the other motes a random location distributed randomly

across the cube with corners (0, 0, 0) and (1, 1, 1).

At the start of each iteration we compute the “force” felt by each mote

due to the influence of the other motes that have exchanged ranging data:

Fi =
∑

j∈connected motes

(dactual(Pj ,Pi) − dranging(Pj ,Pi))
Pj −Pi

||Pj −Pi||2

(3.5)

At the end of each iteration, the position of each mote is updated:

Pi = Pi +
Fi

Number of Neighboring Motes
(3.6)

The algorithm is terminated when the total amount of motion in the

network falls below a threshold.

Similar to the results we will show in section 3.6, we empirically derive

the relationship between point-to-point ranging errors and localization errors

in Figure 3.4.
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Multidimensional Localization Error vs. Point-to-Point Ranging Error
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Figure 3.4: Multidimensional WSN Localization Error versus Point-to-Point

Ranging Error

It turns out that the one dimensional localization gives adequate results

assuming reasonable point-to-point localization data (i.e. an average error of

0.03m achievable using ActiveBats [5]). There are certainly gains to be made

from further research in the general multidimensional sensor localization

case, but the fundamental process of data fusion remains the same.
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3.4 Implementation of Localization in TinyOS

and I2K

Sections 3.3.1 and 3.3.1 introduce the high-level algorithms which we im-

plemented in TinyOS. This section presents details of the implementation

and presents formulas to convert timer “ticks” to distance (in meters) and

to calculate the uncertainty in the measurements.

Our implementation of ranging based on acoustic time-of-flight in TinyOS

is a modification of the code from the Calamari project [48]. The released

Calamari code was designed for ultrasonic sensors using the MICA platform,

not the MICA2. We modified the code to use the piezo-electric buzzer, mi-

crophone, and tone-detection circuit present on the MTS300 (basicsb) sensor

board. We kept the timer granularity at the default 1/1024s (approximately

1 millisecond). This granularity would imply point-to-point distance gran-

ularity of 1
1024

s · 346.65m
s

= 0.34m: too high for indoor data fusion ex-

periments. The MICA2 timer is capable of running at close to 30000 Hz

which corresponds to a point-to-point distance granularity of 0.01m. Unfor-

tunately, changing the clock frequency higher than 1024 Hz is problematic

for TinyOS without major source code modifications.

Without modifying the clock frequency, the relationship between “ticks”

and distance (in meters) is just:

distance =
346.65 ticks

1024
(3.7)

The ranging code returns a large number of results for each ordered mote

pair. Since our setup was static, the reported data has been averaged re-

sulting in the “Averaged Ticks” column in the following table. We compute

the “Absolute Error” as follows:

Absolute Error = |Ranging Distance − Actual Distance| (3.8)

When using this ranging procedure in a real room with real sensors, our

ranging results are summarized in Table 3.2 and graphed in Figure 3.5.
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Table 3.2: WSN Ranging Results in an Office Environment

Mote
Pair

Averaged
Ticks

Ranging
Distance (m)

Actual
Distance (m)

Absolute
Error (m)

0 to 5 179.8 60.8668652 3.03 57.83686523
1 to 0 27 9.14018555 2.63 6.510185547
1 to 3 11.25 3.80841064 2.07 1.738410645
1 to 5 7.26315789 2.45876336 0.725 1.733763363
2 to 1 26 8.80166016 1.45 7.351660156
2 to 4 21.3333333 7.221875 2.07 5.151875
2 to 5 13.8974359 4.70463492 0.725 3.979634916
2 to 6 107 36.2222168 1.27 34.9522168
4 to 0 208 70.4132813 1.55 68.86328125
4 to 1 7.25 2.45430908 1.48 0.974309082
4 to 3 9 3.04672852 1.45 1.596728516
4 to 5 14.7027027 4.97723818 1.65 3.327238176
4 to 6 45.3333333 15.3464844 1.95 13.39648438
5 to 0 15.75 5.3317749 3.03 2.301774902
6 to 1 1614 546.37998 1.27 545.1099805
6 to 3 79.5 26.9127686 1.95 24.96276855
6 to 5 7.63157895 2.58348324 1.04 1.543483244

Avg Abs
Error (m)

45.96062707

Figure 3.5: WSN Ranging Results versus Distance in an Office Environment

We were not pleased with this result and conducted some further re-

search. We searched for explanations related to (1) inaccuracy of measured
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clock ticks and (2) range dependency and variation with respect to oriented

mote-to-mote communication. First, judging by the large range in the mea-

sured clock ticks (e.g. from around 10 to over 200 ticks) for a fairly small

range of distances, it appears that there are some system-level behaviors

that we have not accounted for. Specifically, the motes have a single pro-

cessor which is shared between all scheduled TinyOS tasks. Scheduled tasks

regularly utilize the processor and delay the time-sensitive ranging task.

Scheduling delays, in turn, increase the number of reported ticks. This hy-

pothesis is consistent with some of the large jumps we see in the data and

is also consistent with the “positive” error we always see. This variation in

ticks directly translates into variation in distance (by quite a lot as sound

travels quickly through air) which in turn translates into ranging errors.

Second, we noticed the irregularities in the data with respect to oriented

mote-to-mote communication. As an extreme case, consider the difference

between the computed distance from mote 0 to 5 and mote 5 to 0 (the

same physical distance). Further investigation revealed that the speakers

and microphones that we used for this experiment were not very consistent.

Some speakers produced very different tones that some microphone and

tone-detection circuitry could not detect. Some microphones were not as

sensitive to tones as others. Noticeable air conditioning noise was a likely

source of data complication in addition to hardware inconsistencies.

We had the good fortune of borrowing a collection of MICA2 motes

from the University of Illinois Computer Science department that had been

modified to conduct ranging experiments. Specifically, the speakers on the

sensor boards had been bypassed with another more powerful speaker shown

in Figure 3.6.

Figure 3.6: MICA2 Mote with Loud Speaker

We ran a more methodical ranging experiment where we incremented
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Table 3.3: WSN Loud Speaker Ranging Results versus Distance in an Office
Environment

Mote
Pair

Ranging
Distance

(m)

Actual
Distance (m)

Absolute
Error (m)

0 to 1 1.354101563 0 1.354101563
1 to 0 1.861889648 0 1.861889648
0 to 1 5.501037598 0.5 5.001037598
1 to 0 2.285046387 0.5 1.785046387
0 to 1 2.482519531 1 1.482519531
1 to 0 4.739355469 1 3.739355469
0 to 1 3.949462891 1.5 2.449462891
1 to 0 4.513671875 1.5 3.013671875
0 to 1 4.062304688 2 2.062304688
1 to 0 7.109033203 2 5.109033203
0 to 1 7.334716797 2.5 4.834716797
1 to 0 7.532189941 2.5 5.032189941
0 to 1 6.996191406 3 3.996191406
1 to 0 6.601245117 3 3.601245117
0 to 1 8.350292969 3.5 4.850292969
1 to 0 8.463134766 3.5 4.963134766
0 to 1 10.24039307 4 6.240393066
0 to 1 7.786083984 4.5 3.286083984
1 to 0 8.124609375 4.5 3.624609375

Avg Abs
Error (m)

3.594

the distance between two motes by 0.5 meters and collected data as before.

Our results are summarized in Table 3.3 and graphed in Figure 3.7.
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Figure 3.7: WSN Loud Speaker Ranging Results versus Distance in an Office

Environment

3.5 Point-to-Point Ranging Calibration

Looking at Figure 3.7, it is obvious that there are ranging errors. Interest-

ingly, we have a significant error at a distance of 0 m which then increases

as a function of distance. This sort of error suggests a systematic error in

our procedure which can be modeled with a linear function:

error = m ∗ distance + b (3.9)

From our experimental data shown in Table 3.3, we found m = 0.5697

and b = 2.3648. Removing this trend from the localization data, we get a

new “tick” to distance equation:

distance =
346.65 ticks

1024
− b

m + 1
(3.10)

The resulting [calibrated] graph of ranging error versus distance (Figure

3.8) improves dramatically as well. The new average absolute error is 0.66m.

Note that each pair of sensors has its own calibration curve that needs to

be derived before gathering ranging data.
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Figure 3.8: WSN Loud Speaker Ranging Results versus Distance in an Office

Environment with Calibration

The above results are much better than our first ranging results. We

believe that much of the error reduction is due to the improved speakers as

they were qualitatively much louder than the background noise. Average

point-to-point errors of 0.66m after calibration are still not good enough

for our applications, however. We conclude that further research in rang-

ing needs to be completed before automatically collected ranging data is

useful for localization. We assume that such a method exists and can pro-

duce accurate localization data for the remainder of the thesis. An average

point-to-point error of 0.3m, theoretically achievable using the techniques

compared in Table 3.1, is used for the remainder of this thesis. This error is

synthetically generated by adding additive white Gaussian noise (AWGN),

N(0, 0.3), to ground truth measurements of sensor ranges. Figure 3.9 shows

how localization using actual ranging and synthetic ranging compare.
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Figure 3.9: Schematic of WSN Localization using Actual and Synthetic

Ranging. AWGN represents the addition of additive white Gaussian noise

3.6 Empirical Localization Error

The last unanswered question is how the sensor network localization error

depends on the point-to-point ranging error. This relationship is akin to the

relationship between distance and stereopsis error presented in section 2.8

as it also impacts our fusion result.

Unlike the stereopsis distance error, the localization distance error is in-

38



Table 3.4: One-Dimensional WSN Localization Error versus Point-to-Point
Ranging Error

Ranging Error σ Average Localization Error (m)
0 4.13E-004

0.01 0.22734939
0.02 0.379998377
0.03 0.436389979
0.05 0.487409176
0.1 0.560905693
0.15 0.622361083
0.2 0.665518586
0.25 0.702981488
0.3 0.731265889
0.35 0.754249712
0.4 0.772064259
0.45 0.78817713
0.5 0.798318631

dependent of distance within a reasonable range. This range is primarily

determined by the range of acoustic reception, but is also dependent on the

environment and the network topology. For example, a multi-hop WSN will

increase the time between radio transmission and reception with each addi-

tional routing hop, thereby increasing error. For this thesis, we restrict our

WSN to be a single-hop network in a room with good acoustical properties,

primarily no echos.

The relationship between point-to-point ranging error and localization

error proves non-trivial to analytically derive, but a very good fit can be

made empirically. A set of example data is given in Table 3.4. Nine motes

were used in the generation of this data. The ranging distances were syn-

thetically generated by perturbing the ground truth distance by instances

of N(0, σ). This ranging data was localized using the procedure in section

3.3.1. The average localization error was computed by running the experi-

ment 1000 times and taking the mean of the absolute localization error given

by Equation 3.8.

A plot of the data in Table 3.4 is given in Figure 3.10. This data is fit

extremely well (R2 = 0.99, where R is the correlation coefficient) by the

Equation 3.11.

errorlocalization = 0.138 ln(errorranging) + 0.896 (3.11)
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Figure 3.10: One-Dimensional WSN Localization Error versus Point-to-

Point Ranging Error
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Chapter 4

Fusion of Stereopsis and

Localization

4.1 Introduction to Stereopsis and Localization

Fusion

This chapter seeks to bring the results of chapter 2 and chapter 3 together

and solve the problem posed in section 1.1. We assume that the scene,

relative to the camera, remains static throughout the data collection and

fusion process.

4.2 Stereopsis and Localization Fusion Error

We seek an error metric to quantify our results. In the computational stere-

opsis sensing mode, our result is an image called a depth map. A depth map

is simply an image of a scene where each pixel value represents the depth of

the corresponding scene point from the camera/observer. In the WSN local-

ization sensing mode, the result is simply a set of sensor coordinates relative

to an anchor mote taken to be at the same location as the camera/observer

in the computational stereopsis case. Assuming we know the ground truth

locations of N motes represented both as a depth map and as localization

data, we develop the following error metric, escene:

edepthmap =
N
∑

i=1

‖depthmapcomputed − depthmapground truth‖2
(4.1)
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elocalization =
N
∑

i=1

‖localizationcomputed − localizationground truth‖2
(4.2)

escene = edepthmap + elocalization (4.3)

In general, we are interested in minimizing escene for any choice of N .

4.3 Related Work to Stereopsis and Localization

Fusion

To our knowledge, there is no other work that addresses the specific problem

of depth map and sensor localization fusion. The problem of three dimen-

sional registration in the context of multiple sensors, the first step towards

multi-sensor data fusion, has been investigated in the image processing com-

munity [9], [4]. The larger problem of improving knowledge about the depth

of the scene is simplified multisensor data fusion [21]. The process is sim-

plified due to empirical and theoretical models detailing the accuracy of our

sensors, thereby eliminating the need for the full theoretical framework.

4.4 Registration of Depth Map and Localization

This section addresses the problem of finding a map between sensor iden-

tifiers and real-world sensor locations, a crucial step in practical systems.

The only approach in use with sensor networks is to specify this mapping

manually, as in [27].

A better approach would be to avoid this manual mapping: for large

sensor networks, or even unusual deployment scenarios, manual mapping

may not be an option. This mapping can be automatically found with a

large number of sensors and the assumption that the sensors are “on top

of,” rather than embedded in, the depth map as it appears from the vantage

point of the stereo cameras.

We assume that we have a calibrated depth map, that we know the re-

lationship between one mote (conventionally the mote with identifier 1) and

the camera position, and that the sensor network localization has completed

successfully. The mapping between the sensor identifiers and the real-world

sensor locations is just a three dimensional image registration problem. We

seek the three angles that will rotate the set of localized sensor points so
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that they the minimize the cost function:

∑

i∈sensors

(RPiz − DepthMap(RPix , RPiy ))2 (4.4)

Minimizing Equation 4.4 is just a non-linear least squares optimization

problem. Although the solutions presented in [9], and [4] are more elegant,

this problem can also be solved using standard numerical techniques such

as the downhill simplex search [36]. The latter was easier to implement and

is used in [2]. After registration, the mapping between the sensor identifiers

and the real-world coordinates (given by the location of the sensor on the

depth-map) is obvious.

To simulate this process using [2], we generated a series of “depth maps”

consisting of many randomly placed and valued rectangles as in Figure 4.1.

We then simulated this three dimensional registration by taking a number

of random points on the depth map as sensors. The sensor points were, as a

group, randomly rotated in all possible directions. We ran our optimization

routine to minimize Equation 4.4 and evaluated the success of our algorithm

by evaluating Equation 4.4 at algorithm termination and dividing by the

number of sensors: a perfect result is 0. Our simulated results for a varying

number of points taken from the depth map shown in Figure 4.1 are given

in Figure 4.2. Note that the error figures represent one run of the algorithm

and have not been averaged over multiple trials.
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Figure 4.1: Randomly Generated Test Image for Fusion Registration

As shown in Figure 4.2, this optimization does not perform well with

few sensors. Empirical results have been omitted since our eight sensors are

much too few to say anything. In the remainder of this thesis, the depth

map and localization registration is performed manually.

4.5 Implementation of Stereopsis and

Localization Fusion in I2K

We needed to make some assumptions during the implementation of the

fusion algorithm in Image to Knowledge:

1. Point-to-point sensor ranging is accurate up to an additive Gaussian

noise with standard deviation 0.03m, corresponding to the state-of-

the-art acoustic ToF ranging results [5].

2. A mapping between sensor ids and sensor locations is given. We can

not utilize the techniques in section 4.4 due to lack of sensors.

The implementation of fusion in Image to Knowledge follows directly.

The Image to Knowledge Stereopsis and Localization Fusion Tool, shown

in Figure 4.3, prompts the user for the necessary parameters (e.g. the

stereo matching uncertainty and the point-to-point ranging uncertainty).
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Fusion Rectification Mean Squared Registration Error vs. Number of Sensors
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Figure 4.2: Graph Relating Fusion Registration Mean Squared Error to
Number of Sensors

The stereo distance uncertainty and the localization distance uncertainty

are calculated as in section 2.8 and section 3.6 respectively. A decision

point is then found using Equation 4.5 giving a decision rule as shown in

Figure 4.4.

depththresh = x : errordist(x) = errorlocalization (4.5)
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Figure 4.3: Resulting Fusion of Stereopsis and Localization in I2K

Figure 4.4: Fusion Decision Rule for an Image Matching Error of 4 Pixels

and a Point-to-Point Ranging Error of σ = 0.03m
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The fusion algorithm is to simply apply Equation 2.7 to each known

point of the scene. If zscene < depththresh, the stereo error is decided as

smallest and the localization depth is set to be the average of the stereo

depth in a neighborhood of the known point. Otherwise, the neighborhood

of the known point in the depth map is set to the depth value from the

localization. Obviously, for best results, a large number of points covering

the area of interest is wanted.

Figure 4.5 shows how Figure 4.4 changes with variation of image match-

ing uncertainty. As expected, the depth uncertainty due to stereo increases

with additional image matching uncertainty. Since the depth from stere-

opsis is more accurate than the depth from localization near the camera,

additional image matching uncertainty pushes the threshold depth closer to

the camera.
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Figure 4.5: Fusion Threshold vs. Image Matching Uncertainty with a Point-

to-Point Ranging Error of σ = 0.03m

Figure 4.6 shows how Figure 4.4 changes with variation of point-to-point

ranging errors. As before, the depth uncertainty increases with additional

point-to-point image errors. Since the depth from localization tends to be

less accurate than the depth from stereopsis near the camera, additional
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point-to-point ranging error pushes the threshold depth away from the cam-

era.
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Figure 4.6: Fusion Threshold vs. Point-to-Point Ranging Error with an

Image Matching Error of 4 Pixels

Comparing Figure 4.5 and Figure 4.6, it appears that the threshold depth

is more sensitive to errors in image matching during stereopsis than point-

to-point ranging errors encountered during localization. Figure 4.7 confirms

this observation over the scale of error encountered in practice.
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Figure 4.7: Fusion Threshold Distance (Shown as the Intersection of Two

Curves in Figure 4.4) as a Function of Image Matching Uncertainty and

Point-to-Point Ranging Error

4.6 Results of Stereopsis and Localization Fusion

4.6.1 Evaluation Criteria

We use the error metric presented in section 1.1 to evaluate the fusion result.

4.6.2 Lab Example

As an example of how the fusion process works, we ran an experiment in

an indoor laboratory performing all of the steps except for actual ranging

due to the issues discussed in section 3.3.1 and section 3.5. A picture of the

setup is given in Figure 4.8 and an overhead diagram in Figure 4.9. The

scene represents a “staircase” of depth in front of the camera and newspaper

is used in order to give some texture to the scene and provide some planar

surfaces for easy identification and measurement of points.
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Figure 4.8: Picture of Stereopsis and Localization Experiment
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Figure 4.9: Diagram of Stereopsis and Localization Experiment

The Image to Knowledge Stereo Tool was used to obtain and calibrate

a depth map which is shown in Figure 4.10.
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Figure 4.10: Calibrated Stereo Depth Map

Although we did not run a successful ranging step, we did add noise with

σ = 0.03m and utilize the one dimensional localization procedure given in

3.3.1. The results from that procedure are given in Table 4.1.

The manual registration of image points to sensor locations using Image

to Knowledge is shown in Figure 4.11.
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Table 4.1: Localization Output from Stereopsis and Localization Experiment

Mote ID Distance (m) Height (m)

1 0.0 0.0

2 0.51 0.0

3 1.12 0.07

4 1.30 0.33

5 1.84 0.48

6 2.11 0.80

7 2.64 0.94

8 3.73 1.44

Figure 4.11: Manual Registration of Image Points to Sensors using I2K

The stereopsis and localization fusion is conducted using the Image to

Knowledge Stereopsis and Localization Fusion Tool shown in Figure 4.3.

Finally, we obtain the fused depth map in Figure 4.12 and the fused local-

ization result given in Table 4.2.
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Table 4.2: Fused Localization Output from Stereopsis and Localization Ex-
periment

Mote ID Distance (m) Height (m)

1 0.0 0.0

2 0.51 0.0

3 1.12 0.07

4 1.11 0.33

5 1.67 0.48

6 1.96 0.80

7 1.96 0.94

8 3.73 1.44

Figure 4.12: Fused and Calibrated Stereo Depth Map
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Table 4.3: Fusion Error Results from Stereopsis and Localization Experi-
ment

Data Errors Error (m) % Improvement

Unfused elocalization (Equation 4.2) 1.19 27%
Fused elocalization (Equation 4.2) 0.87

Unfused edepthmap (Equation 4.1) 31.06 98%
Fused edepthmap (Equation 4.1) 0.72

Unfused escene (Equation 4.3) 32.25 95%
Fused escene (Equation 4.3) 1.59

In this case, we see fairly drastic improvement in our error metric. Table

4.3 shows that very real gains can be made using the methodology detailed

in this thesis. Amazingly, the improvements are able to correct areas of the

stereo depth map with errant stereo results. This happens because errant

stereo results (mismatches) tend to be very large distances. The distances

exceed the fusion threshold and the more correct localization data overrides

the depth map. Even without this effect, we see that improvements to our

knowledge of the scene are made.
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Chapter 5

Conclusion

5.1 Conclusion

The problem of improving knowledge of scene geometry and sensor locations

by fusing data from computational stereopsis with WSN localization data

was presented in chapter 1. A detailed discussion of performing computa-

tional stereopsis along with limitations of stereopsis was found in chapter

2. Chapter 3 discussed WSN localization using acoustic time-of-flight rang-

ing. The data fusion of data from the techniques presented in chapter 2 and

chapter 3 is detailed in chapter 4 along with our experimental results.

The main contribution of this work is the prototype software incorpo-

rated into TinyOS [45] and Image to Knowledge [2]. This software forms a

fusion system with the following capabilities:

1. Rectification of stereo image pairs

2. Computation of scene depth from stereo image pairs (stereopsis)

3. WSN Localization through acoustic time-of-flight ranging

4. Supervised and unsupervised fusion of stereo depth maps and WSN

localization

Details of prototype operation are given in the appendices to this thesis.

5.2 Areas of Future Research

There are still open problems related to this work, however. Perhaps most

noticeable is the lack of good acoustic ToF ranging. The other open problem

is that of automation. The current steps in the process from start-to-finish

that require human intervention or major assumptions are:
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1. Picking matching image points for stereo rectification

2. Matching sensor identifiers to image coordinates for stereo calibration

3. Registering localization result with depth map

All three of these problems are classic problems in image processing that

do not have easy solutions.

The problem of finding matching image points between images without

any additional knowledge (i.e. that the images have been rectified) has been

extensively studied in the computer vision community as “point matching.”

A good review of the point matching problem in the context of stereo systems

is given in [46]. The generally accepted procedure is to first extract salient

image features (e.g. corners) from both stereo images. These features are

often matched with each other using a variant of correlation. Points that

can not be matched are often thrown out of the algorithm as outliers. As

always, this whole issue can be side-stepped if a calibrated stereo rig, or

equivalent, is used to capture the stereo pair.

Matching sensor identifiers to image coordinates is a two-phase problem:

first identify where sensors lay in the image, and then determine which

sensor belongs to which identifier. The former is a basic pattern recognition

problem where the target shape is known, but the location, orientation,

and scale are unknown. One method of finding such sensors is “template

matching,” another well-researched area in the computer vision literature

akin to the well-known matched filter [20], [29]. The latter problem can

likely be solved by an optimization extending the one used in section 4.4.

The main difference from the procedure in section 4.4 is the presence of

another parameter: the scale factor of the depth map. Given enough data,

these problems should be solvable, although we have not had the time to

investigate them.

The problem of registering localization results with a depth map of the

same scene was treated in section 4.4. As discussed, this approach is not

attractive for small numbers of sensors, but we do not consider this to be

a problem as large numbers of sensors are likely to be present in real-world

scenarios.
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Appendix A

WSN Localization using

TinyOS

A.1 Introduction

This appendix covers the procedure for performing acoustic time-of-flight

(ToF) ranging with a network of Crossbow MICA2 sensors [14]. The mech-

anism of acoustic time-of-flight ranging is described in section 3.3.1 with

the details of the TinyOS implementation given in section 3.4. As stated

in section 3.4, the code is a modification of code released by the Calamari

project [48].

The process of programming the sensor network is discussed in Section

A.2. The process of performing the localization is given in section A.3. The

output from the ranging code is not in an appropriate format for the fusion

process described in chapter 4; section A.4 details the steps required for data

conversion.

A.2 Programming Sensors to Perform Ranging

To program the sensors, it is assumed that a working installation of TinyOS

[45] is present. In the development of this thesis, TinyOS version 1.1.0

was used exclusively. Additionally, the modified .../contrib/calamari

and .../tools/java/net/tinyos/acoustic ranging code from the NCSA

ALG CVS repository should be installed.

One sensor should be programmed as the base station and will not be

part of the ranging process. To program the mote, change the current

directory to .../apps/TOSBase and issue the following command:

make mica2 install.0
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The additional sensor are programmed with incremental identifiers start-

ing with 1. The identifier in the below programming command has been re-

placed with i. Before programming the motes, change the current directory

to .../contrib/calamari/micaRangingApp. To program each mote, issue

the following command:

make mica2 install.i

A.3 Performing Ranging using TinyOS

After all the motes have been programmed, connect sensor boards with

microphone and speaker to all motes excluding the base station. These

equipped motes should be deployed and powered-on. The base station mote

should be attached to the programmer/interface board, powered-on, and

should be connected to a computer via a serial port (assumed here to be

COM1).

The SerialForwarder Java program is started as follows:

java net.tinyos.sf.SerialForwarder -comm serial@COM1:mica2

Finally, the acoustic ranging Java program is started:

java net.tinyos.acoustic_ranging.acoustic_ranging

The ranging process will take a long time, especially with a large network

of motes. Upon completion, a moteMap.out output file will be written in

the current working directory.

A.4 Converting TinyOS Ranging Output to the

Localization XML Format

The net.tinyos.acoustic ranging.acoustic ranging Java program writes

the ranging results into a file named moteMap.out in the current working

directory. This file is actually a serialized Java class and is not in a suitable

format for use in other applications.

The net.tinyos.acoustic ranging.MoteMapToXML Java program con-

verts the serialized Java class into an XML application. The program usage

is as follows:

java net.tinyos.acoustic_ranging.MoteMapToXML moteMap.out moteMap.xml
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The moteMap.xml file generated by the above command can be renamed

and moved out of the TinyOS file hierarchy: it has no dependencies on

TinyOS code. The XML application has the following format:

<?xml version="1.0" encoding="ISO-8859-1"?>

<localization>

<rangingPair recvId="2" sendId="1">

<range>0.51</range>

</rangingPair>

<rangingPair recvId="3" sendId="1">

<range>1.1064357188738982</range>

</rangingPair>

...

</localization>
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Appendix B

Performing Computational

Stereopsis using I2K

B.1 Introduction

This appendix describes the operation of the Image to Knowledge Compu-

tational Stereopsis Tool. Computational stereopsis is discussed in chapter 2.

A description of the algorithm implemented in Image to Knowledge (I2K)

is given in section 2.6.

B.2 Starting and Opening Images

This appendix assumes a working installation of I2K [2]. To start the Com-

putational Stereopsis Tool, run I2K and select the “Stereo” option from the

“Customs” menu. A new window, shown in Figure B.1, will open with the

Computational Stereopsis Tool.

The Computational Stereopsis Tool can load multiple images for image

selection and comparison. Clicking the “LoadSet” or “AppendSet” buttons

launches a new file selection window titled “Open.” In the “Open” window,

a user may load multiple images by holding the “Shift” or “Ctrl” key. Using

the “LoadSet” button loads multiple images and discards all existing images

in a thumbnail viewer. A user can preserve all existing image in the thumb-

nail viewer and append new images by clicking the “AppendSet” button.

Figure B.2 shows an image “Open” window.

After loading images, the thumbnail window will appear for image brows-

ing and selection. Figure B.3 shows the thumbnail viewer. By moving the

scroll bar on the bottom of the viewer window, a user can browse the im-

ages and check the filenames of each image. The “Select” check box above

each image is for selecting particular images for image processing tasks (e.g.
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Figure B.1: Main window of I2K Computational Stereopsis Tool

rectification, stereo, and comparison).

B.3 Rectifying a Stereo Pair

By clicking the “Rectification” button in the main window, one can launch

the Stereo Rectification Tool shown in Figure B.4. The Stereo Rectification

Tool window consists of two panels: “Stereo Rectification” and “Rectifica-

tion Parameters.” The “Stereo Rectification” panel contains buttons for

computing, loading and saving rectification parameters, and image trans-

formation using the computed (or loaded) parameters. The “Rectification

Parameters” window shows the values of computed or loaded perspective

transformation parameters. The “Send to Main” button will load the se-

lected image into the main image window of Image to Knowledge.

In the Rectification Parameters panel, nine values define the perspective

transformation model in row-major order. The numbers at the end of the

parameter name are the subscripts in the [3x3] transformation matrix.

B.3.1 Computing Coordinate Transformation Parameters

By clicking the “Compute Parameters” button in the Stereo Rectification

Tool window, one can launch the “Feature Selector” window for selecting

transformation control points. Figure B.5 shows the GUI of the “Feature Se-

lector” window. The “Feature Selector” window displays two images before

their rectification, for instance, two images of a scene from slightly differ-

ing views. A user should select approximately 15 matching pairs of control
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Figure B.2: Image file selection in I2K Computational Stereopsis Tool

Figure B.3: Thumbnail viewer in I2K Computational Stereopsis Tool

points in both images to compute the perspective transformation parame-

ters successfully. Each selected point is displayed as a colored circle with the

index of the pair. Clicking “Transform” will use the selected control points

to calculate the parameters used for stereo rectification.

Once the perspective transformation parameters are determined, a set

of images can be transformed and saved by selecting an image and clicking

the “Image Transform & Save” button. A user can specify the suffix of the

transformed saved images. Note that the Computational Stereopsis Tool

current image set may need to be appended with the newly rectified image.
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Figure B.4: Stereo Rectification Tool

B.4 Acquiring a Depth Map

To perform computational stereopsis, simply pick two [rectified] images and

select the “Stereo” button in the Computational Stereopsis Tool window

(Figure B.1). The stereopsis calculation can take a long time. After the

computation has completed, the [uncalibrated] depth map will appear in

the main I2K window.

B.5 Verifying a Depth Map

By selecting two images in the thumbnail window followed by clicking the

“Verification” button in the main window, one can compare two images.

Figure B.6 shows the “Image Composition” window comparing a [saved]

depth map to the “left” image of a stereo pair.
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Figure B.5: Feature Selector Window

B.6 Calibrating a Depth Map

To calibrate a depth map, ensure that the depth map is loaded in the main

“Image to Knowledge” window (the default location of a computed depth

map). Click the “Calibrate” button in the Computational Stereopsis Tool

window to bring up the window in Figure B.7. To calibrate the image, click

a pixel corresponding to a point of known scene depth: you will be prompted

for the depth in meters. You can repeat this process for multiple pixels in

an attempt to improve the calibration. When done, click the “Calibrate”

button at the bottom of the window shown in Figure B.7: the depth map

will be calibrated in-place.

In many cases, the points of known depth may be difficult to “pick out”

from the depth map. Another image corresponding to the “left stereo”

image (or the “left stereo” image itself) can be used instead by selecting the

image from the “Thumbnails” image selection window before clicking the

“Calibrate” button in the ComputationalStereopsis Tool window. The rest

of the calibration procedure is as before.
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Figure B.6: Image Composition/Verification Window

Figure B.7: Depth Map Calibration
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Appendix C

Fusing Stereo and

Localization Using I2K

C.1 Introduction

This appendix describes the operation of the Image to Knowledge Stereopsis

and Localization Fusion Tool. The fusion process is described in chapter 4.

The Image to Knowledge implementation is detailed in section 4.5.

The Stereopsis and Localization Fusion Tool provides a tool for fusing

a calibrated depth map with sensor network ranging data. The output of

the tool is a calibrated and fused depth map that conveys a more accurate

picture of the imaged scene along with corrected sensor localization data.

This tool provides an interface to:

1. Use the Computational Stereopsis Tool to extract a depth map from

a stereo pair.

2. Manually register sensor locations with depth map points.

3. Perform a data fusion process with user-specified stereo and localiza-

tion uncertainties in order to extract a more accurate depth map and

localization result. Note: at this time, the sensor network localization

is limited to a two-dimensional case with at least first-order sensor

“intradistances” known.

C.2 Prerequisites

To successfully run the Stereopsis and Localization Fusion Tool, you must

have an uncalibrated and calibrated depth map of the scene in addition to

an XML application describing ranging data. Appendix B and appendix A

describe how both are obtained respectively.
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The calibrated depth map should be loaded as the main I2K image prior

to starting the Stereopsis and Localization Fusion Tool. This can be done

using the “Open” command from the main I2K “File” menu.

C.3 Starting

The Stereopsis and Localization Fusion Tool can be started by using the

“Depth Map and Localization Fusion” option of the I2K “Customs” menu.

When you select this option, a new window will open on the screen (Figure

C.1).

Figure C.1: Main window of I2K Stereopsis and Localization Fusion Tool

C.4 Manual Registration of Sensors with a

Depth Map

To fuse the two sets of depth information, the depth map and the localiza-

tion must be registered/aligned with each other. Although there may be

automated techniques for handling this problem in the future, the current

method is to specify this mapping manually. To start specifying this map-

ping, use the “Registration” button from the Stereopsis and Localization

Fusion window. A window like Figure C.2 should open.

You should specify every sensor that appears in the depth map. To

specify the location of a sensor, click in the left frame of the “Register
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Figure C.2: Manual Registration Window

Sensor Locations with Depth Map” window. A dialog will appear asking

you to input the sensor ID corresponding to that point. A list of specified

points will appear in the right pane and can be edited by double clicking in

the cells similar to a spreadsheet.

When you have completed registration, click on the “Done” button.

C.5 Fusion

After registering sensor locations with a depth map, the “Fusion” button

in the Stereopsis and Localization Fusion window will become available.

Clicking this button will bring up the dialog box shown in Figure C.3.

Filling in the form should be largely self-explanatory. The reason that

both calibrated and uncalibrated data are used is that the scaling in stereo

calibration must be derived. It is assumed that you know or can conserva-

tively estimate the stereo matching uncertainty in pixels. This error depends

on a number of factors for the correlation-based matching technique used

in I2K. Matching error will tend to rise for scenes that do not exhibit good

“texture” for the correlation window to “lock on” to. This value can also
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Figure C.3: Fusion Dialog Box

change depending on the amount of downsampling used in the input stereo

images (e.g. downsampling the images by 2 will reduce the error by a factor

of 2). We have found an error of 4 pixels to be a reasonable amount in our

testing.

The “Point-to-Point Localization Results” need to be submitted as an

XML file. This file format is defined in section A.4 and should not con-

tain multiple <rangingPair> elements per mote pair, or multiple <range>

elements per <rangingPair>.

The “Localization Intradistance Measurements” file is a simple text file

with the following form ([]’s delineate fields and are not to be included. Lines

1 and 2 are required, the rest are optional.):

[n sensors]

[distance between sensors 1 and 2] [distance between sensors 2 and 3] ... [distance between sensors n-1 and n]

[distance between sensors 1 and 3] [distance between sensors 2 and 4] ... [distance between sensors n-2 and n]

[distance between sensors 1 and 4] [distance between sensors 2 and 5] ... [distance between sensors n-3 and n]

Similarly, you should know the point-to-point ranging error of the spec-

ified data in meters. This is the average error that you see in the ranging

result (e.g. by acoustic time-of-flight ranging) between two motes in the dis-

tance regime of interest. The state-of-the-art acoustic time-of-flight ranging

systems report uncertainty around 3cm at the office-sized scale.
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Clicking the “Perform Fusion” button of this dialog box will start the

sensor network localization and fusion process.

C.6 Obtaining Results

The output from the tool is given in two places. First, the I2K image in

the main window will change to represent the fused depth map. Note that

this image is not saved automatically, and doing so is suggested. Second,

the fused [and unfused] sensor network localization data is dumped to the

window with the I2K console output. This information, while not very

useful for looking at the scene, is potentially useful in other sensor network

applications.
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