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Abstract

With the advance in remote sensing, various machine learning techniques could be applied

to study variable relationships. Although prediction models obtained by using machine

learning techniques are suitable for predictions, they do not explicitly provide means for

determining input-output variable relevance. The relevance information is often of interest

to scientists since relationships among variables are unknown.

In this thesis, we investigated the issue of relevance assignment for multiple machine

learning models applied to remote sensing variables in the context of terrestrial hydrology.

The relevance is defined as the influence of an input variable with respect to predicting the

output result. We follow the classical conceptual definition of relevance, and introduce a

methodology for assigning relevance using various machine learning methods. The learning

methods we use include Regression Tree, Support Vector Machine, and K-Nearest Neighbor.

We derive the relevance computation scheme for each learning method, and propose a method

for fusing relevance assignment results from multiple learning techniques by averaging and

voting mechanism. All methods are evaluated in terms of relevance accuracy estimation

with synthetic and measured data. The main contribution of this thesis is a methodology

for relevance assignment for multiple learning methods based on local regression, and the

fusion methods better robustness.
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Chapter 1

Introduction

The problem of understanding relationships and dependencies among geographic vari-

ables (features) is of high interest to scientists in many data-driven, discovery-type analyses.

Various machine learning methods have for data-driven analyses been developed to build

prediction models that represent input-output variable relationships. However, prediction

models obtained by using machine learning techniques vary in their underlying model rep-

resentations, and frequently do not provide a clear interpretation of input-output variable

relationships. Thus, the goal of data-driven modeling is not only accurate prediction but

also interpretation of the input-output relationships.

In this thesis, we address the problem of data-driven model interpretation to establish

relevance of input variables with respect to predicted output variables. First, we introduce

the previous work in chapter 2, and formulate an interpretation of data-driven models by

assigning relevance to input variables in chapter 3. Relevance assignments are derived at the

sample (local) or model (global) levels based on co-linearity of input variable basis vectors

with the normal of regression hyper-planes formed over model-defined partitions of data

samples. Second, we propose algorithms for combining relevance assignments obtained from

multiple data-driven models in chapter 4. Finally, we evaluate accuracy of relevance assign-

ment by using (a) three types of synthetic and one set of measured data, (b) three machine

learning algorithms, such as Regression Tree (RT), Support Vector Machine (SVM), and

K-Nearest Neighbors (KNN), and (c) two relevance assignment fusion methods as docu-

mented in chapter 5, and summarize our results in chapter 6. The novelty of our work lies in

developing a methodology for relevance assignment over a set of machine learning models,

1



proposing relevance fusion methods, and demonstrating the accuracy of multiple relevance

assignment methods with multiple synthetic and experimental data sets.
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Chapter 2

Previous Work

The first task in establishing input-output relationships is to understand which subset

of all considered input variables is important for predicting output variables. This problem

is known in the literature as the problem of variable/feature selection. There are multiple

approaches to the feature selection problem given multiple variables and their observed

values. Based on the given data and the goal of the analysis, we can use either unsupervised

or supervised techniques to approach this problem.

For unsupervised technique, one can evaluate the importance of input variables directly

by measuring information entropy, data correlation, and etc. The rank of input variables

are directly computed based on the metric used for information evaluation. The advantage

of unsupervised technique is that it does not require the training of a data-driven model,

and is usually computationally faster. However, this evaluation might not reflect the actual

input-output relationship since it only uses input variables.

One can also utilize supervised technique by building a data-driven model and evaluating

the variable importance based on accuracy of the model. Supervised technique can be blindly

used to select a optimal combination of variables that yield the most accuracy model, or it

can be used to directly assign the relevance values to the input variables.

In the following sections, we introduce two main directions of achieving feature selection

from the previous research literature. One is feature subset selection, which selects the

relevant features from the input variables for the learning tasks. The other is dimensionality

reduction, which reprojects the original features into a feature space of lower dimension.

The learning tasks are thus performed on this reduced feature space. A common technique
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for achieving this is by using principal component analysis (PCA)[13].

2.1 Feature Subset Selection

Feature subset selection is one of the classical research areas in machine learning [12] [15]

[10]. Its goal is to pre-select the most relevant features for learning concepts and to improve

accuracy of learning [21]. There are multiple approaches to perform this pre-selection. One

can exhaustively search through all feature combinations for the optimal one. To make the

problem tractable, the trimmed search can be used to obtain a sub-optimal result. One

can also perform the relevance assignments for the input variables, and thresholding the

relevance values to obtain a subset of features. In the work of Pudil et al [22], the authors

use a sequential search through all possible combinations of feature subsets, and find an

optimal feature subset that yields the best result. With a similar attempt, Perner and his

coworkers [20] compare the influence of different feature selection methods in the learning

performance for decision tree.

However, the exhaustive search over all possible combinations of feature subsets is not

always computationally feasible for large number of features, for instance, in the case of

hyperspectral band selection. To address the feasibility aspect, Bajcsy and Groves [3] [9]

proposed to use a combination of unsupervised and supervised machine learning techniques.

A statistical based approach for spectral classification was proposed by S. De Backer et al.

[2]. In the work by Kempeneers et al [14], the wavelet based feature transformation is used

to achieve high accuracy in band classification.

Another way for selecting the relevant feature subset is to directly assign the relevance

values to each input variable, and make the selection on variables with high relevance. The

challenge of this relevance assignment is related to the multitude of relevance definitions.

For example, relevance of an input variable could be defined by traversing a regression

tree model and by summing its weighted occurrence in the tree structure as proposed by
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White and Kumar [24]. In the survey by Blum et al [5], the authors give a conceptual

definition of a relevant input variable as a variable that will affect the prediction results if

it is modified. In our work, while adhering to the conceptual definition of Blum et al [5], we

extend the definition of relevance assignment by numerically quantifying relative importance

of input variables. Our relevance assignment is related to the work of Heiler et al [11], in

which the authors used co-linearity of basis vectors with the normal of a separating hyper-

plane obtained from Support Vector Machine (SVM) method as the metric for relevance

assignment. We use the co-linearity property in our relevance assignments derived from a

set of regression hyper-planes formed over model-defined partitions of data samples.

2.2 Dimensionality Reduction

Dimensionality reduction [1] is to reduce the dimension of original data by reprojecting

the original features into a feature space of lower dimension. Instead of selecting a subset

of M features from N input features like in feature subset selection, the goal is to find M

dimensional representation of N dimensional input features that would preserve the input

feature information. Dimensionality reduction techniques commonly used include principal

component analysis (PCA), linear discriminant analysis (LDA) and principal feature analysis

(PFA).

The principal component analysis (PCA) is widely used for creating relevant features

from the linear transformation of original input data to the principal axis. The advantage of

PCA is that its choice of transformation satisfies several optimal properties. An important

property is that it maximizes the ”spreading”, or variance of the data in the feature space

it creates [18]. Therefore it retains the data variation in the original input variables. The

mean square error between the lower dimension approximation and the original data is also

minimized. One of the concrete applications of PCA for succinct representation is in the

problem of face recognition [23]. In this work, PCA is performed on a series input face
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images to extract the principal features. These features, so called ”Eigenface”, are then

used to represent the face images and for recognition task.

Another dimension reduction technique called linear discriminant analysis (LDA) [19]

is also widely used in machine learning community. It is closely related to Fisher’s linear

discriminant by finding the linear combination of features which best separate two or more

classes. The resulting linear combination can therefore be used for feature dimension reduc-

tion prior to the training task. An application of LDA for face recognition can be found in

the work by Belhumeur et al [4]. In comparison, the main difference between PCA and LDA

is that PCA is an unsupervised learning technique, while LDA is a supervised technique that

relies on the class labels of input data.

There are pros and cons of applying either feature subset selection or dimensionality

reduction for feature selection. Feature subset selection can retain the features in the orig-

inal space, but the resulting feature sets will consists of redundancy. On the other hand,

dimensionality reduction can transform the original feature into the new feature space with

minimum redundancy, but can not retain the original features.

Therefore, although both PCA and LDA are useful in dimension reduction by creating

relevant features, they have the main disadvantage that the measurements in the original

features are transformed into the lower dimension space. These measurements can only be

used indirectly in the projected new features. It is sometimes more desirable to use the subset

of the original features for analysis, especially when the scientists want to understand the

data relationship of certain features. The technique called principal feature analysis(PFA) is

proposed based on this motivation [6]. It first performs the dimension reduction and finds the

principal components based on the same criteria as PCA. Instead of projecting the original

features to the subspace, it exploits the structure of the obtained principal components of a

feature set to find a subset of the original feature vector. Therefore, the resulting subset of

the features retain the measurement of original forms. However, comparing to PCA, PFA

would obtain the feature sets with more redundancy due to the constraints of picking only
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original features.

2.3 Thesis Work Related to Previous Works

Relevance assignment in this work differs from feature sub-set selection by not assigning

binary label to each feature (in or out of the sub-set) but assigning a continuous value that

estimates the relevance of an input variable. For example, in Figure 2.1, each input variable

vi has the result ri from relevance assignment and pi from feature subset selection. In

feature subset selection, each pi has only binary value 0 or 1 indicating whether it is selected

as relevant feature, while in our relevance assignment method, each ri has continuous value

indicating its relevance in resulting prediction. The relevance value is not only continuous

over it dynamic range but also might be continuous over time and space depending on

a phenomena. Feature subset selection creates categorical description of input relevance

while relevance assignment creates a continuous description. With the continuous relevance

values over all input variables by using relevance assignment, a threholding can be further

performed to obtain the binary feature subset selection.

Our relevance assignment work differs from the previous works of dimensionality reduc-

tion as explained in the previous sections. As we can see in Figure 2.1, dimensionality

reduction techniques reproject the original variables v1, v2, and v3 into new feature axes e1,

e2, and e3. The dimension of the input data is then reduced by selecting only the feature

axes ei with high eigenvalues. Our relevance assignment work directly assigns a continuous

relevance values to each input variables vi, without transforming the original variables

Techniques for direct relevance assignments have been proposed for several machine learn-

ing methods. However, most of them target only specific learning methods, and it is difficult

to generalize them to other methods. Our relevance assignment methodology based on lin-

ear regression extends to multiple machine learning methods that partition input-output

examples.
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Figure 2.1: Illustration of differences in relevance assignment, feature subset selection, and
dimensionality reduction.

Our contribution in this thesis is a relevance assignment methodology derived from pre-

vious conceptual definitions [5]. We define the formulation of relevance assignment for three

data mining methods, and propose a scheme for fusing relevance values from these methods.
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Chapter 3

Relevance Assignment

To analyze input-output relationships in practice, one is presented with discrete data that

could be described as a set of M examples (rows of a table) with N variables (columns of a

table). Examples represent instances of multiple ground and remotely sensed measurements.

Measurements are the variables (features) that might have relationships among themselves.

Our goal is to obtain better understanding of the relationships.

In this work, we start with a mathematical definition of variable relevance that is consis-

tent with the conceptual understanding of input-output relationships. We define relevance of

an input variable vi ∈ ~v = (v1, v2, . . . , vN) as the partial derivative of an output (predicted)

function f(v1, v2, . . . , vN) with respect to the input variable vi. Equation 3.1 shows a vector

of relevance values for all input variables.

~R = (
∂f(v1, v2, . . . , vN)

∂v1

; . . . ;
∂f(v1, v2, . . . , vN )

∂vN

) (3.1)

This definition assumes that input and output variables are continuous, and an output

function f is C1 continuous (first derivative exists). In order to follow this mathematical

definition in practice, there arise challenges associated with (1) processing discrete samples,

such as defining the neighborhood proximity of a sample in the manifold of input variables,

(2) representing a data-driven model, such as deriving analytical form of a predicted func-

tion, (3) scaling input and output variables with different dynamic ranges of measurements,

(4) removing dependencies on algorithmic parameters of machine learning techniques, (5)

understanding variability of relevance as a function of data quality parameters (e.g., sen-
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sor noise, cloud coverage during remote sensing), and (6) treating a mix of continuous and

categorical variables, just to name a few.

Our approaches to the above challenges are (a) to perform our analysis on sample parti-

tions obtained using a machine learning technique, (b) to use a mathematically well defined

(analytically described) model, like the multi-variate regression, (c) to scale all variables to

the same dynamic range of [0, 1], which is discussed in chapter 5, (d) to propose the fusion

of multi-method relevance results to increase our confidence in the relevance results, and

(e) to investigate dependencies on algorithmic parameters of machine learning techniques

and data quality parameters with the experiment results discussed in chapter 6. We verify

our methods on data synthesized from analytical functions of various types, as discussed in

chapter 5. Having analytical description of a function f allows us to derive relevance accord-

ing to the definition. We have currently constrained our work to processing only continuous

variables and foresee the inclusion of categorical variables in our future work.

Based on the above considerations, we define sample and model relevance assignments

for a set of discrete samples with measurements of continuous input and output variables.

Example relevance Rij is the local relevance of each input variable vi computed at the

sample sj . The computation is defined for three machine learning techniques in the next

sub-sections. Model relevance Ri is the global relevance of each input variable vi over all

examples in the entire data-driven model computed by summing all sample relevancies. To

obtain comparable example and model relevancies from multiple data-driven models, we

normalize the relevance values by the sum of all model relevancies over all input variables

(see Equation 3.2). The normalized relevance values are denoted with a tilde.

R̃ij =
Rij∑

i

∑
j Rij

; R̃i =

∑
j Ri∑

i

∑
j Rij

(3.2)

In the next subsections, we introduce relevance assignment for Regression Tree (RT),

Support Vector Machine (SVM), and K-Nearest Neighbors (KNN). The main reason for
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choosing these three methods comes from our requirement for remote sensing data analysis

to process continuous input and output variables. Furthermore, the methods represent a

set of machine learning techniques with different underpinning principles for data-driven

modeling. The KNN method builds models using only close neighbors to a given sample.

The SVM method builds models based on all input samples. As for the RT method, it

builds its model by hierarchically subdividing all input samples and fitting a local regression

model to samples in each divided cell (leaf). Thus, these methods represent a spectrum

of supervised machine learning techniques that would be evaluated in terms of relevance

assignment accuracy.

3.1 Regression Tree

The process of building a regression tree based model can be described by splitting input

examples into sub-groups (denoted as cells or tree leaves) based on a sequence of criteria

imposed on individual variables [10]. The splitting criteria, e.g., information gain or data

variance, might depend on problem types, and become one of the algorithmic parameters. In

this work, we choose variance as our splitting criterion. Once all examples are partitioned into

leaves, a multi-variate linear regression model is used to predict output values for examples

that fall into the leaf.

For any example ej, example relevance Rij of the variable vi is computed from the linear

regression model associated with the regression tree leaf. The regression model at each

regression tree leaf approximates locally the prediction function with a linear model written

as:

f(~v) = β0 + w1v1 + w2v2 + . . . + wNvN (3.3)

The example (local) relevance assignment Rij is then computed as a dot product between

the normal ~w of a regression model hyper-plane and the unit vector ~ui of input variable vi
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as described below:

Rij = |~w • ~ui| (3.4)

where |~w • ~ui| denotes the absolute value of a dot product of vectors ~w and ~ui.

3.2 K-Nearest Neighbors

K-nearest neighbors is a machine learning method that predicts output values based on

K closest examples to any chosen one measured in the space of input variables . Predicted

values are formed as a weighted sum of those K nearest examples [16] [10].

For any example ej, example relevance Rij of the variable vi is computed from the linear

regression model obtained from the K nearest neighbors to the example ej . The linear

regression model approximates locally the prediction function f . The example relevance

assignment is performed according to Equations 3.3 and 3.4.

3.3 Support Vector Machine

Support vector machine (SVM) is a machine learning method that could build a model

for separating examples (classification problem) or for fitting examples (prediction problem).

We use SVM as a prediction technique to model input data. The SVM model could be

linear or non-linear depending on a SVM kernel. The non-linear models are obtained by

mapping input data to a higher dimensional feature space, which is conveniently achieved

by kernel mappings [7]. Thus, the prediction function f could be obtained from mathematical

descriptions of linear and non-linear kernels. In this thesis, we focus only on a linear model

in order to simplify the math.

For a SVM method with the linear kernel, the mathematical description of f becomes

a hyper-plane as described in Equation 3.3. The major difference among RT, KNN and

SVM methods is in the fact that SVM would use all examples to estimate the parameters
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of the hyper-plane and it would lead to only one hyper-plane for the entire set of examples.

The example relevance assignment for SVM follows Equation 3.4. In the case of SVM, the

example relevance and model relevance are identical.
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Chapter 4

Relevance Fusion

The goal of relevance fusion is to achieve more robust relevance assignment in the presence

of noise, variable data quality (e.g., clouds during remote sensing), as well as to remove any

bias introduced by a single machine learning method. The latter motivation is also supported

by the no-free-lunch (NFL) theorem [8], which states that no single supervised method is

superior over all problem domains; methods can only be superior for particular data sets.

In this thesis, we propose two different schemes to combine the results of relevance

assignment, such as average fusion and rank fusion. Average fusion is based on taking the

numerical average of relevance values, and using it as the combined relevance value. Rank

fusion, on the other hand, uses the voting scheme to combine the relative ranks of each input

variable determined by each machine learning method.

4.1 Average Fusion

Average fusion is executed by taking the normalized relevance results from multiple

machine learning methods, and computing the average of them.

Given R̃k
ij as the example relevance of i-th variable at the example ej from k-th method,

the example relevance assignment of R̃
avg
ij estabilished using average fusion for the example

ej is defined as :

R̃
avg
ij =

1

L

L∑

k=1

R̃k
ij (4.1)

where L is number of learning methods used.

The model relevance assignment of R̃
avg
i using average fusion for an input variable vi is
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the sum of all example relevancies as defined in Equation 3.2.

4.2 Rank Fusion

Rank fusion is executed in a similar manner as the average fusion. The difference lies

in assigning a relevance rank to each variable vi based on its relevance ranking by the k-th

machine learning model. The absolute magnitude of relevance assignment is lost in rank

fusion since the meaning of magnitude is converted to relative ranking during the process.

The rank fusion approach is expected to be more robust than the average fusion approach,

epsecially when some of the machine learning methods create very incorrect models due to

various reasons and skew the correct results of other machine learning methods.

The example relevance assignment using rank fusion is described as follows. For each

example ej and its normalized example relevance R̃k
ij , we define the rank of each variable

vi as the index of a sorted list of relevancies from the smallest to the largest; rank{R̃k
ij} ⊂

{1, 2 . . .M}. The rank fusion based relevance assignment for variable vi is then computed

as shown below:

R̃rank
ij =

2

LN2

L∑

k=1

(N − rank{R̃k
ij}) (4.2)

The model relevance assignment of R̃rank
i using rank fusion for an input variable vi is the

sum of all example relevancies R̃rank
ij over all examples as defined in Equation 3.2.
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Chapter 5

Evaluation System Setup

Evaluations were performed with both synthetic and measured data. Synthetic data

allow us to simulate three categories of input-output relationships with known ground truth

to understand relevance assignment accuracy and relevance dependencies. Measured data

was used to demonstrate the application of relevance assignment to study vegetation changes.

The results were verified based on our limited understanding of the phenomena.

The next sub-sections describe synthetic data simulations, model building setup, evalua-

tion metrics to assess relevance assignment accuracy, and demonstration of our experimental

system.

5.1 Synthetic Data Simulation

Three sets of input-output relationships were simulated to represent (1) linear additive,

(2) non-linear additive and (3) non-linear multiplicative categories of relationships. To in-

troduce irrelevant input variables into the problem, we simulated output using only two

input variables v1, v2 (the relevant variables) while modeling relationships with four vari-

ables, where the additional two input variables v3, v4 have values drawn from a uniform

distribution of [0,1] (the irrelevant variables). The specific analytical forms for generating

the three data sets are provided in Equations 5.1 -linear additive, 5.2 -non-linear additive

and 5.3 -non-linear multiplicative.

f(v1, v2, v3, v4) = 4v1 + v2 (5.1)
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f(v1, v2, v3, v4) = f(v1, v2, v3, v4) = sin πv1 + cos
π

2
v2 (5.2)

f(v1, v2, v3, v4) = v1v
2

2
(5.3)

In addition to simulating multiple input-output relationships and relevant-irrelevant vari-

ables, we added noise to generated output values to test the noise robustness of relevance

assignments. Noise is simulated to be an additive variable following 1D Gaussian distribu-

tion with zero mean µ and standard deviation σ; N(µ = 0, σ). The standard deviation was

parameterized as σ = αd, where α is the percentage of the dynamic range d of an output

variable. In our experiments, we used α = 0.1 and α = 0.3 to generate the total of nine

synthetic data sets (3 without noise, 3 with additive noise α = 0.1, and 3 with additive noise

α = 0.3).

5.2 Model Building Setup

Model building setup is concerned with optimization of algorithmic parameters and cross

validation. First, we set the algorithmic parameters to the following values: (1) RT - variance

error as a criterion for splitting, minimum number of examples per leaf to eight, maximum

tree depth to 12; (2) KNN - K = N +3 where N is the dimension of all input variables. The

reason for setting K slightly larger than the input variable dimensions is to meet the least-

square fitting requirements for estimating a hyper-plane from K examples; (3) SVM - linear

kernel, cost factor C = 1.0, and termination criteria Epsilon = 0.001. The optimization

of KNN’s parameter ”K” and RT’s parameter ”maximum tree depth” was investigated

experimentally.

Second, we omitted cross validation of models in our experiments and rather computed

input variable relevance based on all available examples. We will investigate in the future the
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accuracy of input variable relevance assignment from examples selected by cross validation

or all available examples.

Finally, KNN and SVM methods are sensitive to the scale of input variables, and will

favor variables with a wider scale of values. In order to avoid this type of a bias, the

dynamic range of all variables is always normalized to the range between [0, 1] according to

the formula below:

NormalizedV alue =
V alue − MinV alue

MaxV alue − MinV alue
(5.4)

5.3 Evaluation Metrics

To evaluate the accuracy of input variable relevance assignment using multiple machine

learning methods, we introduced two metrics, such as percentage of correctness (PC) and

error distance. The evaluations are conducted only for the synthetic data against the ground

truth values of normalized example relevance R̃GT
ij and normalized model relevance R̃GT

i . The

ground truth values are obtained by computing partial derivatives of Equations 5.1, 5.2 and

5.3 according to Equation 3.1.

5.3.1 Percentage of Correctness

The percentage of correctness metric is defined in Equation 5.5 as:

PC =

∑M
j=1

δj

M
× 100% (5.5)

where δj is 1 if

max
i

R̃GT
ij = max

i
R̃ij

and is 0 otherwise
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5.3.2 Error Distance

The error distance metric is defined in Equation 5.6 as the Euclidean distance between

the true model relevance derived from partial derivative and the relevance estimation from

our methods. This metric does not apply to the relevance results obtained using rank fusion

since the results are categorical.

ErrorDist. =
N∑

i=1

(R̃GT
i − R̃i)

2 (5.6)

5.4 Experimental System

The evaluation of relevance assignments was performed using GeoLearn software that was

developed by NCSA and CEE UIUC. GeoLearn allows a user to model input-output vari-

able relationships from multi-variate NASA remote sensing images over a set of boundaries.

The machine learning algorithms in the GeoLearn system leverage five software packages,

such as, Im2Learn (remote sensing image processing), ArcGIS (georeferencing), D2K soft-

ware (RT implementation), LibSVM [17] (SVM implementation), and KDTree [16] (KNN

implementation).

We integrate these components into a data analysis system for our experiment. The

system contains four stages : synthetic parameter setting, attributes selection, learning

model selection, and visualization. In the parameter setting stage, the user selects the type

of function from the combo box and use the slider bar to adjust the noise level of data, as in

Figure 5.1. In the attributes selection stage, the input and output attributes from the data

are selected by the user for analysis, as in Figure 5.2. After the user selects the learning

method he wish to use in the analysis, the visualization window renders the analysis results

such as relevance assignment, data prediction, and prediction error, as in Figure 5.3 and

Figure 5.4.
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Figure 5.1: Screen capture of our experimental system. The combo box is for selecting the
function type, and the slider bar is for changing the noise level. The help screen on the right
gives the instruction at each step.

Figure 5.2: Screen capture of our experimental system. The attributes in the input and
output columns are selected for analysis of input/output relationships.
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Figure 5.3: Screen capture of our experimental system. The output image visualizes the
relevance assignment results. The user can use the combo box to select different option of
visualization. Left : predicted relevance assignment from KNN model. Right : ground truth
relevance assignment.

Figure 5.4: Screen capture of our experimental system. The output image visualizes the
output prediction results using KNN method. Left : predicted values from KNN model.
Right : ground truth values of data.
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Chapter 6

Experiment Results

In this section, we present evaluations with synthetic and measured data in two forms.

First, we report a relevance image that shows the color of an input variable with maximum

relevance value at each pixel location. The color coding schema maps red, green, blue and

yellow colors to (v1, v2, v3, v4). Second, we provide a relevance table with model relevance

value for each input variable.

6.1 Synthetic Data

6.1.1 Relevance Assignments Results

The relevance assignment results using RT, KNN, and SVM methods from synthetic data

are summarized in Figure 6.1 and Table 6.1. As we can see from the results, SVM is very

robust for linear data, while RT and KNN perform better for non-linear data.

6.1.2 Relevance Fusion Results

The results obtained using fusion methods for the synthetic data are summarized in

Figure 6.2 and Table 6.2. Both fusion schemes perform reasonably well by considering

relevance results from multiple methods. However, when the result from one of these methods

goes very wrong, the averaging scheme can sometimes be affected and fail to give a correct

result. As we can see in Figure 6.2 and Table 6.2, the results of averag fusion are affected

due to the poor performance of SVM for non-linear additive data.
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Figure 6.1: Relevance assignment images for synthetic data. From top row to bottom row :
linear data, non-linear multiplicative data, and non-linear additive data. From left to right
: ground truth, regression tree, k-nearest neighbors, and support vector machine.
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Linear Non-Linear Add. Non-Linear Mul.
Model Var Correct

Percent
Correct
Percent

Correct
Percent

Relevance Error
Dist.

Relevance Error
Dist.

Relevance Error
Dist.

RT v1 0.8
100%

0.667415
95.5%

0.423898
91.83%

v2 0.2 0.330931 0.575511
v3 3.0E-17

4.0E-29
8.54E-4

2.79E-6
2.73E-4

0.001
v4 3.72E-17 8.01E-4 3.17E-4

KNN v1 0.8
100%

0.616814
95.07%

0.35364
96.94%

v2 0.2 0.326967 0.568512
v3 7.48E-14 2.24E-

25
0.027992

0.004263
0.039011

0.00621
v4 3.53E-13 0.028227 0.038838

SVM v1 0.748753
100%

0.0.040722
20.69%

0.391619
75%

v2 0.249007 0.95396 0.598363
v3 6.29E-4

0.00503
0.005292

0.781345
0.001454

0.000168
v4 0.00161 2.69E-5 0.008564

Table 6.1: Relevance assignment results using regression tree, K-nearest neighbors, and
support vector machine.

Linear Non-Linear Add. Non-Linear Mul.
Model Var Correct

Percent
Correct
Percent

Correct
Percent

Relevance Error
Dist.

Relevance Error
Dist.

Relevance Error
Dist.

Fusion
Avg

v1 0.782918
100%

0.44165
68.67%

0.389719
97.72%

v2 0.216336 0.537286 0.580795
v3 2.0E-4

0.000558
0.011379

0.093948
0.013579

0.001
v4 5.37E-4 0.009685 0.015906

Fusion
Rank

v1 0.8
100%

0.3
97.58%

0.3
97.62%

v2 0.2 0.4 0.4
v3 7.48E-14

NA
0.133333

NA
0.166667

NA
v4 3.53E-13 0.166667 0.133333

Table 6.2: Relevance assignment results using fusion schemes.
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Figure 6.2: Relevance assignment images for synthetic data using relevance fusion. From
top row to bottom row : linear data, non-linear multiplicative data, and non-linear additive
data. From left to right : ground truth, average fusion, and rank fusion.
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Figure 6.3: Relevance assignment images for linear data with noise. Top row : linear data
with 10% noise. Bottom row : linear data with 30% noise. From left to right : regression
tree, support vector machine, k-nearest neighbors, average fusion, and rank fusion.

Figure 6.4: Relevance assignment images for non-linear multiplicative data with noise. Top
row : data with 10% noise. Bottom row : data with 30% noise. From left to right : regression
tree, support vector machine, k-nearest neighbors, average fusion, and rank fusion.
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Linear Data Add. : Relevance with Noise (%)
Model Var 10 % Correct

Percent
Error
Dist.

30 % Correct
Percent

Error
Dist.

RT

v1 0.711588

84.29% 0.01062

0.644956

86.15% 0.033657
v2 0.240934 0.22233
v3 0.024482 0.069678
v4 0.022996 0.063036

KNN

v1 0.397197

45.59% 0.2378252

0.288214

86.15% 0.3753629
v2 0.214593 0.238612
v3 0.192119 0.237003
v4 0.196092 0.236171

SVM

v1 0.788641

100% 0.0001776

0.79588

100% 2.46E-5
v2 0.201972 0.200412
v3 0.005282 0.002392
v4 0.004105 0.001317

Fusion
Avg

v1 0.632475

96.88% 0.0394371

0.57635

91.74% 0.07108
v2 0.219166 0.220451
v3 0.073961 0.103024
v4 0.074398 0.100174

Fusion
Rank

v1 0.4

91.18% NA

0.4

89.11% NA
v2 0.3 0.2
v3 0.133333 0.266667
v4 0.166667 0.133333

Table 6.3: Summary of relevance assignments for linear synthetic data with noise
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Non-Linear Data Mul. : Relevance with Noise (%)
Model Var 10 % Correct

Percent
Error
Dist.

30 % Correct
Percent

Error
Dist.

RT

v1 0.405985

84.93% 0.000593

0.436787

72.75% 0.01111
v2 0.577826 0.507675
v3 0.008041 0.027279
v4 0.008148 0.028259

KNN

v1 0.303406

82.41% 0.05893

0.272351

56.16% 0.157361
v2 0.455939 0.3415
v3 0.119827 0.191977
v4 0.120828 0.194172

SVM

v1 0.395111

75% 5.02E-5

0.414512

75% 0.001425
v2 0.601205 0.566833
v3 0.001396 0.004211
v4 0.002289 0.014444

Fusion
Avg

v1 0.368167

90.14% 0.00893

0.37455

77.67% 0.028569
v2 0.54499 0.472003
v3 0.043088 0.074489
v4 0.043755 0.078959

Fusion
Rank

v1 0.333333

88.37% NA

0.333333

76.41% NA
v2 0.366667 0.366667
v3 0.166667 0.166667
v4 0.133333 0.133333

Table 6.4: Summary of relevance assignments for non-linear multiplicative synthetic data
with noise
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Non-Linear Data Add. : Relevance with Noise (%)
Model Var 10 % Correct

Percent
Error
Dist.

30 % Correct
Percent

Error
Dist.

RT

v1 0.565207

68.44% 0.014285

0.463235

58.57% 0.056862
v2 0.372952 0.378203
v3 0.033536 0.082852
v4 0.028305 0.07571

KNN

v1 0.353553

53.03% 0.018587

0.275271

31.87% 0.274157
v2 0.247346 0.249596
v3 0.200375 0.239165
v4 0.198726 0.235968

SVM

v1 0.040941

20.69% 744761

0.025481

20.69% 0.805613
v2 0.923234 0.957779
v3 0.031645 0.005078
v4 0.00418 0.011662

Fusion
Avg

v1 0.3199

57.14% 0.168686

0.254662

42.32% 0.233466
v2 0.514511 0.528526
v3 0.088518 0.109032
v4 0.07707 0.10778

Fusion
Rank

v1 0.366667

64.85% NA

0.366667

50.74% NA
v2 0.333333 0.333333
v3 0.2 0.133333
v4 0.1 0.166667

Table 6.5: Summary of relevance assignments for non-linear additive synthetic data with
noise
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Figure 6.5: Relevance assignment images for non-linear additive data with noise. Top row
: data with 10% noise. Bottom row : data with 30% noise. From left to right : regression
tree, support vector machine, k-nearest neighbors, average fusion, and rank fusion.

6.1.3 Results for Synthetic Data with Noise

We also evalutate the methods with the same synthetic data with noise added. The

resulting relevance assignments are summarized in Table 6.3, Table 6.4, and Table 6.5. The

relevance images are shown in Figure 6.3, Figure 6.4, and Figure 6.5 for each set of data.

The performances from our methods are affected by the added noise in different degrees.

From these results, we see that the K-nearest neighbors are more vulnerable to noise than

other methods, and support vector machine is relatively more robust for it limited degree of

freedom.

6.2 Measured Data

We processed remotely sensed data from NASA acquired in 2003, at spatial resolution

1000m per pixel and at the location (latitude x longitude) = ([35.34, 36.35] x [-91.54, -

93.32]. We model the ouput variable Fpar (fraction of photosynthetic active radiation) as
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Figure 6.6: Relevance images for measured data. Left column from top to bottom : regression
tree, k-nearest neighbors, and support vector machine. Right column from top to bottom
: average fusion and rank fusion. The most relevant variable at each pixel is indicated by
color.
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Model Var Relevance

RT

LAI 0.996014
LST 0.003058
Latitude 1.07E-4
Longitude 8.20E-4

KNN

LAI 0.449047
LST 0.178427
Latitude 0.17511
Longitude 0.197416

SVM

LAI 0.885942
LST 0.073454
Latitude 0.040576
Longitude 2.82E-5

Fusion
Avg

LAI 0.777001
LST 0.08498
Latitude 0.071931
Longitude 0.066088

Fusion
Rank

LAI 0.4
LST 0.266667
Latitude 0.133333
Longitude 0.2

Table 6.6: Relevance assignment results for measured data provided by NASA.
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a function of input variables consisting of LST (land surface temperature), LAI (leaf area

index), Latitude, and Longitude. Though we do not have the underlying analytical model

for the relationship among these input-output variables, we anticipated that for this geo-

spatial location, Fpar is more relevant to LAI, and both Latitude and Longitude are not

relevant to Fpar. Therefore, the expected input-output variable relationship is the relevance

of LAI in terms of output variable Fpar should be the largest value and close to 1, while the

relevance of LST should be much smaller. The Latitude and Longitude should be considered

as irrelevant noise, with relevance values close to 0. The relevance results are summarized

in Figure 6.6 and Table 6.6. As we can see from the results, all of our proposed methods

yield expected results by predicting LAI as the most relevant input variable in predicting

Fpar. Based on the experiment, we get consistent results from these methods, and they are

similar to the results we have from linear synthetic data with noise added. Therefore, we

are confident that the data relationship can be approximated by the linear model with noise

in measurement.

6.3 Relevance Assignment As a Function of

Algorithmic Parameters

In this test, we would like to understand the variability of relevance assignment as the

function of different algorithm parameters. Here we test the tree depth parameter for RT,

and the number K neighbors for KNN. For each data set, we use different tree depth for the

same regression tree model trained from the data and compute the correctness of relevance

assignment. A similar test is also performed for KNN algorithm using different K parame-

ters. In our experiment, we set the range of tree depth between 3 to 10, and the range of K

parameter between M+3 to M+303, where M is the input dimensions. The test dataset are

the non-linear multiplicative data and non-linear additive data defined in chapter4. We con-

veniently skip the linear data because both RT and KNN methods will locally approximate
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the data with linear regression. Therefore, they will yield approximately identical relevance

assignment results for linear data, regardless of the different parameters we set.

The results of the experiments are plotted in Figure 6.7 and Figure 6.8. For regression

tree, we observed a similar trend here as from the results of previous work by White et al[24].

In their work, they observed that as the tree depth increase to certain point, the testing

error start to increase, which is due to the over-fitting of the model to data. Similarly, as we

increase the tree depth, we also observed that after a particular depth, the error of relevance

assignments start to increase. For KNN, we observed similar trends for opposite reason.

As we increase the number of K, the closest K points cover a larger region of input space.

Therefore after passing certain threshold, the linear regression model computed from these

K points does not have enough expressivity for the variation of this large region. Thus the

relevance assignment becomes inaccurate for this model.

If we see both methods in a more unified way, they both perform the partition of examples.

RT subdivides the input space into a tree hierarchy, and KNN selects the K neighbors in its

proximity. The different tree depth parameter and the K neighbors parameter both give clue

about the size of examples in the partition for our relevance assignment method. Assuming

there are M input examples, the approximate number of examples for each leaf node will be

M
2d , where d is the depth of tree. We can therefore relate the K parameter in KNN to the

tree depth parameter in RT, using the formula :

K =
M

2d
(6.1)

and

d = log
M

K
(6.2)

where d is the depth of regression tree, and K is the K neighbors parameter. From our

experiment, we see that the peak of the correctness for RT and KNN have their param-

eters following the relationship in Equation 6.2. Therefore we can utilize this parameter
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Figure 6.7: Plot of percentage correct as the function of regression tree depth. (Left :
Non-linear additive data. Right : Non-linear multiplicativedata.)

Figure 6.8: Plot of percentage correct as the function of parameter K in KNN. (Left :
Non-linear additive data. Right : Non-linear multiplicativedata data.)

relationship to optimize the performance of our relevance assignment method.

6.4 Relevance Assignment As a Function of Data

Quality

In this experiment, we wish to understand the results of relevance assignment as a func-

tion of data quality. We test our relevance assignment methods on the measured data with

different level of data quality. The remote sensing data provided by NASA come with the

quality control mask associated with each input variables. By applying different quality cri-

teria (QA masks), we can either discard the unreliable measurements ( due to cloud covering,
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Figure 6.9: The images generated from measured data by applying quality control masks of
different levels. The white area indicate pixels removed after applying the mask. From left
to right : high quality data, medium quality data, and low quality data.

sensor noise, and etc ), or process measurements.

For our experiments, we use the same input-output variables from the same geographic

location as in the previous section. We build three different test datasets representing high

quality, medium quality, and low quality data using different quality bit setting. There are

total of eight quality control parameters for the input data. Among them, four are used for

LST variable and the other four are for LAI/Fpar variables. Each of them has the discrete

value from 0 to 3, where 0 represents the highest quality, and 3 represents the lowest quality.

Although there are totally 28 possible combinations for all of these control parameters, we

observed that most of the combinations yield the same data. For simplicity, we chose only

those three of the combinations which led to significantly different data. We labeled them

as high, medium, and low quality data according to the number of high quality bits in the

quality control parameters. The data labeled with high quality should have the most of its

parameters set to 0 (highest quality), while the data labeled with low quality should have

very few of the parameters set to high quality. The settings of quality control parameters

for the high, medium, and low quality data are summarized in Table 6.7. The results after

applying different quality control masks are shown in Figure 6.9. The total numbers of

examples after QA processing are 4,286 examples for high quality data, 10,502 examples for

medium quality data, 12,433 examples for low quality data.

The relevance assignment results for the datasets are summarized in Table 6.8. The

average relevance of LAI from different quality data is shown in the chart of Figure 6.10.
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Figure 6.10: Chart of LAI relevance as the function of data quality.

The reason for selecting LAI for observation is that from previous experiments in measured

data, we found LAI as the most relevant variable for predicting Fpar. Thus we expect to

understand the change in relevance assignment through the observation of LAI variable. We

hypothesized that the relevance of LAI would increase with the higher quality of input data.

However, the results did not confirm our hypothesis. We believe that the relevance value

might vary within 7% as a function of data quality, assuming that statistically sufficient

number of examples are processed.
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Parameter Quality Settings
Variable QA Control Bit High Medium Low

LST

Mandatory QA 0 3 3
Data Quality 3 3 3
Emissivity Error 0 0 3
LST Error 0 0 3

LAI/Fpar

MODLAND QA 1 1 3
Algorithm Path 0 0 0
Landcover Source 0 0 0
Pixel Quality 0 3 3

Table 6.7: The parameter settings for QA control bits. All QA control bits have the discrete
range from 0 to 3, where 0 denotes the highest quality and 3 denotes the lowest quality. We
choose 3 combinations of these data quality bits to represent data of high, medium, and low
qualities. Other combinations are omitted because they do not yield significant difference
from the data generated with the chosen combinations.
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Relevance
Model Var High Quality Medium Quality Low Quality

RT

LAI 0.633368 0.754668 0.705934
LST 0.149101 0.099970 0.103617
Latitude 0.101862 0.065668 0.078714
Longitude 0.115667 0.079693 0.111734

KNN

LAI 0.395249 0.520158 0.517823
LST 0.179153 0.145516 0.144572
Latitude 0.191304 0.153562 0.154405
Longitude 0.234292 0.180762 0.183198

SVM

LAI 0.880259 0.823931 0.757232
LST 0.094106 0.140822 0.197846
Latitude 0.011883 0.023401 0.026861
Longitude 0.013750 0.011845 0.018059

Fusion
Avg

LAI 0.636292 0.699585 0.660330
LST 0.140787 0.128769 0.148678
Latitude 0.101683 0.080877 0.086660
Longitude 0.121236 0.090767 0.104330

Fusion
Rank

LAI 0.4 0.4 0.4
LST 0.233333 0.233333 0.2
Latitude 0.133333 0.166667 0.166667
Longitude 0.233333 0.2 0.233333

Table 6.8: Results of variability test for relevance assignment using measured data under
different level of quality. The mandatory QA bit is set to 1 for high quality data, and is 3
for low quality data. The total numbers of examples after processing are 4,286 examples for
high quality data, 10,502 examples for medium quality data, 12,433 examples for low quality
data.
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Chapter 7

Discussion

The results presented in the previous chapter are discussed by comparing individual

machine learning methods and fusion methods.

7.1 Comparison of Individual Methods

For linear data without noise, all of our methods perform well and give accurate results

in both percentage of correctness (PC), and error distance metrics. However, for non-linear

data, SVM constantly gives poor performance. This is due to the fact that we use linear

kernel, and therefore, its expressivity is limited. The performance drop is especially drastic

when we test it with non-linear additive data, when there are periodic changes of the data.

Though both RT and KNN perform relatively well under non-linear dataset, we observe some

noisy pattern for the relevance image from KNN. This is because KNN is a local method only

considering its close neighbors, and is more sensitive to noise of the data. On the other hand,

RT is more robust to noise of data but usually cannot give a very accurate approximation of

the relevance image. This is because RT works by subdividing the input space into individual

cells, and assigns a prediction model for each cell. Therefore, its accuracy is limited by the

level of this subdivision, or in other words, the tree depth. Though increasing the maximum

tree depth might give us a better relevance approximation, in reality it is usually preferred

to grow the tree only to a certain depth and not to over-fit the data.

The robustness properties mentioned above are especially obvious under noisy data.

As we can see from Figure 6.3, Figure 6.4, and Figure 6.5, the correctness of relevance
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assignments for KNN are affected by the noise in data. SVM, on the other hand, benefits

from its lack of degree of freedom. The performance drop under noise is relatively small

for SVM with linear kernel. We also note an interesting result when testing non-linear

multiplicative data under noise, where SVM outperforms other methods. Since the original

data is monotonically increasing, the linear kernel happens to be a moderate approximation

for it. Therefore, when testing with the same data with noise added, SVM is able to yield a

better result than RT and KNN.

In summary, RT is a reliable hybrid method that usually gives accurate relevance estima-

tion. KNN is flexible under different data type and always gives good relevance estimation

in terms of correctness. However, it is very sensitive to noise, and we observe significant

performance drops when noise presents. SVM usually yields more robust result under noise,

but is restricted by its expressivity since we use only linear kernel here. There is no single

best method for every dataset. The correctness of relevance assignment strongly depends on

the type of data and the learning method we use. The fusion methods are proposed based

on this motivation.

7.2 Comparison of Fusion Methods

The goal of relevance fusion is to take advantage of each method and to increase the

stability of relevance assignment results. From experiments, fusion methods usually outper-

form any single method in terms of relevance assignment correctness (PC). For data without

noise, the difference between average fusion and rank fusion is not obvious. In terms of error

distance, average fusion is a better choice than rank fusion scheme, since it preserves the

relevance value magnitude. However, since average fusion takes the average of relevance

values across different methods, the error distance it obtains will not be optimal.

For dataset with noise, the correctness of relevance assignment for fusion methods is

stable, though sometimes not optimal comparing to the best results from all the individual

41



method. However, it is still desirable to use fusion method since they perform more stable

under various data type and noise setting.

The two schemes usually work equally well in most circumstances in terms of correctness.

However, there are situations the rank fusion scheme might yield a more reliable result. One

of the examples is for non-linear additive data, when SVM gives a very poor estimation of

relevance assignment. In this case, the performance of averaging scheme will be pulled down

by this poor result, and cannot yield accurate results comparing to ranking scheme (See

Figure 6.2 and Table 6.2).

7.3 Application to Real World Data

For real measured remotely sensed data, our experiments show consistent results of the

relevance assignments. The ranking of relevance for input variables from high to low are LAI,

LST, Latitude and Longitude. The amplitude of relevance estimation results indicate that

LAI is much more relevant than other variables in predicting Fpar. Though all of the methods

give us consistent relevance assignment, result from KNN is is less reliable comparing to other

methods. The relevance assignment obtained from KNN is not as discriminative for LAI to

other variables. We believe this is due to the fact that KNN is more sensitive to noise, and

its relevance assignments are therefore affected by noise in the data measurement.
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Chapter 8

Conclusion

In this thesis, we proposed a framework for computing input variable relevance with

respect to a predicted output variable from multiple machine learning methods. Following

the conceptual definition of relevance in the literature, we defined partial derivatives of

input-output dependencies as our relevance assignment approach. The estimation of two

types of relevancies, such as example and model relevancies, were implemented for regression

tree, K-nearest neighbors, and support vector machine methods. Additional fusion schemes

for combining the relevance results from multiple methods were evaluated together with

single methods by using synthetic and measured data and two metrics. Based on three

categories of synthetic input-output simulations including linear additive, non-linear additive

and non-linear multiplicative relationships without or with noise added, we concluded that

the relevance assignment using fusion approaches demonstrate more robust performance

than the assignment using a single machine learning method.

In the future, we would like to extend the fusion methods to include the results from

other learning methods, and to understand the dependencies of relevance assignment on

model building setups.
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