
National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

Cyberintegrator

Rob Kooper
Chris Navarro
Liana Diesendruck
Jong Lee
Luigi Marini

Outline

•  Definitions
•  Scientific Workflow
•  Cyberintegrator

•  Examples
•  KISTI (CFD)
•  TX Water Management (RAPID)
•  WSSI (RHESsys)

•  Cyberintegrator
•  Architecture
•  Technologies used
•  Rest interface

•  PAW
•  Deployment, how to get it
•  Future work

•  Integration with Medici

Scientific Workflow

•  A scientific workflow system is a specialized form of a
workflow management system designed specifically to
compose and execute a series of computational or data
manipulation steps, or a workflow, in a scientific
application

•  A workflow consists of a sequence of connected steps
where each step follows without delay or gap and ends
just before the subsequent step may begin. It is a
depiction of a sequence of operations, declared as work
of one or more simple or complex mechanisms.

Cyberintegrator

•  Workflows as a communication mechanism
•  Make workflows documented and sharable
•  Separate science from ‘logistics’

•  Enable integration of independent tools
•  Keep models, algorithms, data in open formats accessible from

outside the scientific workflow system

•  Expose workflow as a service
•  The model encapsulated by a workflow can be exposed a restful

service

Definitions

•  Input = data that is used by algorithm
•  Output = data that is created by algorithm
•  Parameter = controls the algorithm executed
•  Tool = the encapsulation of the algorithm
•  Step = a single execution of a tool

STEP

TOOL

outputs inputs

parameters

Definitions

•  Workflow = a sequence of steps
•  Executor = code to execute a type of tool
•  Engine = code to execute a workflow

STEP 1 data data STEP 2 data

USE CASES

Cyberintegrator Use Cases

•  KISTI
•  Execute complex CFD on HPC systems
•  Used in university courses with hundreds of students

•  Texas Water Management
•  Execute RAPID model
•  Uses Cyberintegrator service from inside ArcGIS
•  Used by Microsoft as a demo at AGU

•  WSSI
•  Execute RHESsys model

KISTI Use Case

•  Working with KIST super computer center in Korea
•  Allow users to run complex solvers
•  Upload their models
•  Run solvers on HPC
•  Parameter sweeps
•  Visualize results

Solver Selection

Parameter Selection

Execution List

Visualization

TEXAS WATER MANAGEMENT

Texas Water Management

•  Working with UT-Austin and Texas Commission on
Environmental Quality (TCEQ)

•  Goal: Building a decision support system for water
management

•  Utilizing the river flow model called RAPID

Building a Cyberintegrator Workflow for RAPID

•  Download NLDAS data
•  Execute RAPID model
•  Generate visualization (images) of the model results

Web Application

USE CASE: WSSI

Creating CI Workflow

•  You can create a CI workflow by using CI Desktop
•  CI workflow can wrap the command line tools
•  Example: simplified run.sh script to run RHESsys

•  3 inputs: worldfile.zip, tecfile, flowfile
•  Unzip worldfile.zip, Run RHESsys, Zip the results

#!/bin/bash
unzip $1
/home/jonglee/rhessys/rhessys -st 1990 1 1 1 -ed 1993 10 1 1 \
 -b -t $2 -w ./worldfile -r $3 -s 12.0880 14.2677 \
 -sv 2.1529 83.7472 -gw 0.4108 0.0823
zip results.zip result_*

Simple Web Application

CYBERINTEGRATOR

Cyberintegrator Architecture

•  Plugin based
•  Executor types

•  Local (on local
machine)

•  Remote (remote
service)

•  Example executors
•  Java (local)
•  Command Line (local)
•  HPC (remote)

Cyberintegrator

Engine

Executor Executor Executor

Technologies Used

•  JAVA
•  Spring Framework, especially spring-data, well

established, been around long time.
•  Hibernate, used as ORM

•  Data is stored in MySQL (tested), but can be any relational
database.

Local vs Remote Executors

•  Local Executors
•  Run on same machine as Cyberintegrator
•  Cyberintegrator controls what executors is running
•  Limited number of parallel processes

•  Remote Executors
•  Run on different machine
•  Process Management is done outside of Cyberintegrator
•  All executors are started if possible

JAVA Executor

•  Local executor
•  JAVA code is run in Cyberintegrator VM
•  Need implementation of JAVA interface

•  setInput
•  setParameter
•  Execute
•  getOutput

•  System.exit() is a bad call!

Java Wizard

•  Add JAR files with tools
•  Including any additional jar files needed

•  Select tools that needs to be imported

•  Wizard will use interface to get
•  Name and description
•  Inputs and outputs
•  Parameters

Command Line Executor

•  Local executor
•  Execute command line tool
•  Sets working folder to a temp folder
•  Can capture stdout and stderr
•  Will add copy of inputs in temp folder

•  Prevents modification
•  Will copy outputs back to database

Command Line Wizard

•  Point to executable
•  What inputs, outputs are needed
•  What parameters are needed

•  Flags, options etc.

•  Any additional files needed
•  Set environment variables

HPC Executor

•  It is a RemoteExecutor that uses SSH Channels to
communicate with various queuing systems

•  Similar to Command Line Executor except the execution line
(executable, flags, inputs, etc) for the tool are appended to a
script and submitted to a queuing system

•  An XML definition file must be provided to the tool with
information about the HPC (e.g. location of submit, terminate,
status commands), a script to append the execution line to,
and the regex for parsing job status messages

•  Queuing systems tested
•  PBS
•  Loadleveler
•  SGE (minimally tested)

HPC Tool

•  A Wizard guides users through tool creation process
•  User provides XML host definition file and executable
•  The wizard allows user to specify program arguments

and inputs that will be used to build the tool’s User
Interface

•  Each HPC Tool requires the following information, which
is added dynamically to the tool definition and will be part
of the tool’s UI
•  Username on target machine
•  Userhome on target machine
•  SSH URI for target machine

Cyberintegrator Applications

•  Server Application
•  Exposes Cyberintegrator as restful service
•  Allows uploading/downloading workflows/data
•  Allows execution of workflows on server

•  Workflow Editor
•  Web based
•  Work online/offline
•  Allows for creation/editing of workflows on server

•  Tool creator
•  Temporary tool to allow creation of tools on server

Cyberintegrator Server

•  Standard REST endpoint
•  Results are JSON

•  Same engine/executors as Desktop
•  Can execute workflows on demand

•  Workflows as a service!

•  Can upload datasets for workflow
•  Can specify parameters for workflow

Cyberintegrator REST

•  People [GET, POST]
•  http://<host:port>/persons/{pid}

•  Workflows [GET, POST]
•  http://<host:port>/workflows/{wid}/
•  http://<host:port>/workflows/{wid}/zip
•  http://<host:port>/workflows/{wid}/executions/{eid}

•  LogFiles [GET]
•  http://<host:port>/logfiles/{lid}/

•  Datasets [GET, POST]
•  http://<host:port>/datasets/{did}/
•  http://<host:port>/datasets/{did}/zip
•  http://<host:port>/datasets/{did}/{fid}
•  http://<host:port>/datasets/{did}/{fid}/zip

Workflow Editor

•  Web based
•  Create tools
•  Create workflows
•  Execute workflows
•  View past executions
•  Upload/download datasets/results

Workflow Editor

PAW

PAW

•  Published Active Workflow
•  Workflows can have many steps, many inputs and many

parameters, not all should be exposed to user or as
service.

•  Allows single widget to control multiple parameters
•  Associates UI widgets with parameters.

PAW Editor

•  Web based (HTML5) tool for interactively publishing
workflows. The tool allows you to:
•  Publisher can specify which workflow fields to expose to users
•  Guides user through process of mapping Web UI widgets (Text,

Int, Float, Custom) to one or more exposed workflow fields
•  Add Metadata about workflow tools

•  Review panel allows user to review/modify JSON before
publishing

PAW Editor – Field Mapping

PAW Editor – Review JSON

Getting Started with Cyberintegrator

•  Download Cyberintegrator app

•  Create tools
•  Use toolcreator for now

•  Create workflow
•  Execute workflow on server
•  Check results

Future Work

•  Finish Web based editor
•  Allow for tool creation
•  Add authentications (openID)

•  Data integration with Medici
•  Right now data stored in filesystem
•  Data can be stored in Medici

•  More executors for Cyberintegrator
•  MATLAB
•  R

•  PAW editor
•  Allow selection of widgets
•  Publish PAW as a web application

Cyberintegrator FAQ

•  Source Code
•  https://opensource.ncsa.illinois.edu/stash/projects/CBI

•  Bugs
•  https://opensource.ncsa.illinois.edu/jira/browse/CBI

•  Documentation
•  https://opensource.ncsa.illinois.edu/confluence/display/CBI

•  Application Downloads
•  http://isda.ncsa.illinois.edu/download/index.php?

project=Cyberintegrator&sort=version

Questions

•  Feel free to contact us

•  http://isda.ncsa.illinois.edu

•  isda@ncsa.illinois.edu

DEMO

Cyberintegrator Demo

•  Software URLS:
•  https://opensource.ncsa.illinois.edu/bamboo/browse/CI-SERVER
•  Download latest build:

•  cyberintegrator-webapp-all.zip
•  cyberintegrator-tool-creator.zip

•  Source URL:
•  https://opensource.ncsa.illinois.edu/stash/scm/~cnavarro/grep-

demo.git

Cyberintegrator Start

•  Unzip cyberintegrator-webapp-all.zip
•  Launch bin/cyberintegrator-service
•  Open webbrowser

•  http://localhost:8888/persons (Should return [])

•  Unzip cyberintegrator-tool-creator.zip
•  Launch bin/tool-creator

Create First Tool

•  Add Person
•  Add Command-Line tool

•  netstat
•  Executable is netstat
•  Capture stdout
•  Add parameter

•  Name is options
•  Default value is –an
•  Can be empty

Create Second Tool

•  Build in eclipse
•  Clone git repository

•  https://opensource.ncsa.illinois.edu/stash/scm/~cnavarro/
grep-demo.git

•  Import projects
•  Run->As Maven package

•  Build in command line
•  git clone https://opensource.ncsa.illinois.edu/stash/scm/

~cnavarro/grep-demo.git
•  cd grep-demo/grep-tool
•  mvn package

Add Second Tool

•  Add Java tool
•  Add files point to target/grep-tool-example-0.0.1-SNAPSHOT.jar
•  Select GrepTool

Create Workflow

•  In browser go to http://localhost:8888/editor
•  Login is email address of user created
•  Password can be blank (for now)
•  Editor should show 2 tools
•  Create new workflow

•  Either plus under workflows or on tab page
•  (known bug of invalid first workflow page CBI-468)

•  Drag netstat and grep on canvas
•  Connect stdout of netstat to input file of grep

•  Save workflow
•  http://localhost:8888/workflows

Execute Workflow

•  Click on Execute
•  Open workflow just created
•  Fill in workflow

•  Title, description
•  Options = -an
•  Regex = .*LISTEN.*

Workflow History

•  Click on History
•  Select on execution just created

•  See how long a step took (milliseconds)
•  Download results

