NCSA

Cyberintegrator

Rob Kooper Chris Navarro Liana Diesendruck Jong Lee Luigi Marini

National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

Outline

- Definitions
 - Scientific Workflow
 - Cyberintegrator
- Examples
 - KISTI (CFD)
 - TX Water Management (RAPID)
 - WSSI (RHESsys)
- Cyberintegrator
 - Architecture
 - Technologies used
 - Rest interface
- PAW
- Deployment, how to get it
- Future work
 - Integration with Medici

Scientific Workflow

- A scientific workflow system is a specialized form of a workflow management system designed specifically to compose and execute a series of computational or data manipulation steps, or a workflow, in a scientific application
- A workflow consists of a sequence of connected steps where each step follows without delay or gap and ends just before the subsequent step may begin. It is a depiction of a sequence of operations, declared as work of one or more simple or complex mechanisms.

Cyberintegrator

- Workflows as a communication mechanism
 - Make workflows documented and sharable
 - Separate science from 'logistics'
- Enable integration of independent tools
 - Keep models, algorithms, data in open formats accessible from outside the scientific workflow system
- Expose workflow as a service
 - The model encapsulated by a workflow can be exposed a restful service

Definitions

- Input = data that is used by algorithm
- Output = data that is created by algorithm
- Parameter = controls the algorithm executed
- Tool = the encapsulation of the algorithm
- Step = a single execution of a tool

Definitions

- Workflow = a sequence of steps
- Executor = code to execute a type of tool
- Engine = code to execute a workflow

USE CASES

Cyberintegrator Use Cases

- KISTI
 - Execute complex CFD on HPC systems
 - Used in university courses with hundreds of students
- Texas Water Management
 - Execute RAPID model
 - Uses Cyberintegrator service from inside ArcGIS
 - Used by Microsoft as a demo at AGU
- WSSI
 - Execute RHESsys model

KISTI Use Case

- Working with KIST super computer center in Korea
- Allow users to run complex solvers
- Upload their models
- Run solvers on HPC
- Parameter sweeps
- Visualize results

Solver Selection

Create Monitor Logaut

-Model Type	Preprocessor		Postprocessor
10 20	NoUploadMesh Upload Mesh eMega Applet	*	Mesh/isualizer
1D_Shocktube (No Mesh)		Description	
2D_Comp-2.0 (eMega)		2D_Comp-2.0 by usin	ng eMega applet
2D_Comp-2.0_P (eMega)			
2D_Comp-2.1 (upload)			
2D Incomp-2.0 (eMena)			
2D Incomp-2.0 P (eMega)			
2D_incomp-2.1 (upload)			
2D_Incomp-2.1_P (upload)			
2D_USTD_Burg (No Mesh)			
2D_VPM (eMega)			
2D_YUIBM_1 (upload)			
2D_YUIBM_2 (upload)			
2D_uComp-1.0 (eMega)			

Parameter Selection

Creata Monitor Logout

시물리이선 실험

te: Test				
Simulation Desc	cettion			
Test Simulatio				
				1
Parameters				
	Laurch ettern			
Creato datasot	Select West file			
Mach Number	0.15	From	To	Step
Revealts	6000000	© From	To	241
Number	800000			,
Angle of Attack	16.0	Prom	To	52.89
Error Televence	0.0001	© Prom	TO	509
091	3.0	© From	To	Step
Elow Tune				
rian type	Tubunit fire			
Write File Interval	100	From	To	Shep
Total Relation	100000	© From	To	5kg
Seathoose	Church days and	20.6	mp-2.0 (Hitken)	
	Steady tow	0.000		
PAIR Scherrie	Floebd 💌			
Limiter	Minmod			
Time Integration	10-505			
Cen. Paint for	0.0	© From	To	249
Moment (ii)				
Cen. Paint for	0.0	Ensen	To	5249

Execution List

DEDISON-2	<mark>산열유체</mark> 영유체	시올레이션 수업	게시판			
시뮬레이션 실행					111월일 111 3일	2
C 10.10	30	2012-11-23 10:46	EMISHED	Cancel	Select	Cretoil
Manitor	N04	2012-11-22 17:41	FINISHED	Cancel	Select 💌	Detail
rolaw	test_by Junityung	2012-11-22 09:17	EINSHED	Cancel	Select	Detail
	▼ 1c12-0					
	Angle of Attack=10	2012-11-14 09:42	EINEHED	Cancel	Select .	Detail
	Argle of Attack=11	2012-11-14 00:40	ENSHED	Cancel	Select .	Detail
	Angle of Attack=12	2012-11-14 00:43	FINISHED	Cancel	Select .	Detail.
	Angle of Attack=13	2012-11-14 08:43	FINSHED	Cancel	Select 🔳	Detail
	Angle of Attack=14	2012-11-14 08:43	EINSHED	Cancel	Select .	Detail.
	Angle of Attack=15	2012-11-14 08:43	ENGHED	Cancel	Select 💌	Detail.
	Angle of Attack=16	2012-11-14 09:43	EINSHED	Cancel	Select 🔹	Datal
	Argle of Attack=17	2012-11-14 00:43	ENSIED	Cancel	Select .	Datal
	Angle of Attack=16	2012-11-14 08:43	PINISHED	Cancel	Select 🗷	Detel
	Angle of Attack=19	2012-11-14 08:43	EINSHED	Cancel	Select	Cetal.
	Angle of Attack=2	2012-11-14 08:43	EINSHED	Cancel	Select ·	Cetal.
	Angle of Attack=20	2012-11-14 08:43	ENGHED	Cancel	Select .	Detail.
	Angle of Attack=0	2012-11-14 00:43	ENSHED	Cancel	Select 🔹	Datal.
	Angle of Attack+4	2012-11-14 00:43	EINISHED	Cancel	Select .	Date!
	Ange st.Attack=6	2012-11-14 08:43	FINISHED	Cancel	Select	Detter.
	Angle of Attackm6	2012-11-14 08:43	EINSHED	Cancel	Select	Cetal
	Angle of Attack=7	2012-11-14 08:43	ENGHED	Cancel	Select •	Cetal.
	Angle of Attack+9	2012-11-14 02:43	EINEHED	Cancel	Select .	Detail

NCSA

Visualization

TEXAS WATER MANAGEMENT

Texas Water Management

- Working with UT-Austin and Texas Commission on Environmental Quality (TCEQ)
- Goal: Building a decision support system for water management
- Utilizing the river flow model called RAPID

Building a Cyberintegrator Workflow for RAPID

- Download NLDAS data
- Execute RAPID model
- Generate visualization (images) of the model results

Web Application

WDSS v0.1		Abou
Real-Time Water Decision Su	port System v0.1	
This prototype real-time modeling system downloads eatures. These results are then used by a river mode understand the impacts of drought and flood condition	Joah-MP Land Surface model data, which forecast runoff, soil moisture, evap called RAPID to forecast stream flows. Model forecasts are visualized as a V s on streamflows. Users can adjust model parameters to predict the impacts of the streamflows.	iotranspiration, and water table levels given land surface Web application for students and decision makers to of alternative curtailment scenarios or weather forecasts.
etting up Workflow	Model Results	
t the following parameters to run the workflow	+ Junction Lake Lyndon & Court of Johnson	Lake Travis
NLDAS start date 2012-01-26	Harper Fredericksburg Lake M Mountain Home	Austin Austin Somerville Lake Giddings Bre
NLDAS end date 2012-01-29	scksprings	Cedar Creek Bastrop
Viz start date 2012-01-26	Caryon Lake Beens	sin Marcos
Viz end date 2012-01-29	Camp State State Camp Scherz, - S	egu'n Schulenburg Columbu
	le Hondo	Hallettsville
Run » Reset	Uvalde Divine Percent Editoria	El Camp Cordele
h Statua	La Pryor Batesville Pearsall Jourdanton	Kar + City Vorktown
D Status	Crystal City Dilley	Victoria · Vanderbilt Goliad
ownload NLDAS data: FINISHED xecute RAPID; FINISHED	Carrizo Springs Cotulia Frio	Pettus Port Lavaca Matag Ba
enerate Viz: FINISHED	Asherton Din Groups West 37	Refugio Aransas National
Visualize the result »	Image courtesy of NASA © 2	ULZ MICrosoft Corporation (22021) AARiha Qillemins of Use Contains Before
	2012.01.26.00:00:00 D Day Stop	esult Images Result NETCDF

USE CASE: WSSI

Creating CI Workflow

- You can create a CI workflow by using CI Desktop
- CI workflow can wrap the command line tools
- Example: simplified **run.sh** script to run RHESsys
 - 3 inputs: worldfile.zip, tecfile, flowfile
 - Unzip worldfile.zip, Run RHESsys, Zip the results

```
#!/bin/bash
unzip $1
/home/jonglee/rhessys/rhessys -st 1990 1 1 1 -ed 1993 10 1 1 \
    -b -t $2 -w ./worldfile -r $3 -s 12.0880 14.2677 \
    -sv 2.1529 83.7472 -gw 0.4108 0.0823
zip results.zip result_*
```


Simple Web Application

← → C file://localhost/Users/imarini/Documents/wssi/WSS/rhessys-js/calibrate.html	C d 🥝 🔘 ≡
WebRHESys Run Calibrate About Contracting ratios for reserve in http://wssi.ncsa.illinois.edu/3888 Calibrate RHESsys Job Status Worldfile Log Unload Log clim.zip Loose File No file chosen Unload Tecfile Loose File No file chosen Unload Flowtable Loose File No file chosen Unload Flowtable No file chosen Unload Unload Flowtable No file chosen Unload Unload Flowtable No file chosen Unload Simulation Start Date 1995 101 1 m 0.01	
Cyberhategrated Server http://wsil.nosa.lillinois.edu/3888 Calibrate RHESsys Job Status Worldflie Coose file No file chosen Upboel Log Log clin.2p Coose file No file chosen Upboel defs.2p Coose file No file chosen Upboel Tooffile Coose file No file chosen Upboel Flowtable Coose file No file chosen Upboel Simulation Start Date 1993 10 1 1 Upboel Line Calibration End Date 1995 10 1 1 Interview Interview m 0.01 100 Interview Interview	
Calibrate RHESsys Job Status Worldfile Coose File No file chosen Upload clim.zip Coose File No file chosen Upload defs.zip Coose File No file chosen Upload Tecfile Coose File No file chosen Upload Flowtable Coose File No file chosen Upload Flowtable Coose File No file chosen Upload Simulation Start Date 1993 10 1 1 Upload Calibration End Date 1995 10 1 1 Upload	
Worldfile Cnoose File No file chosen Upload clim.zip Cnoose File No file chosen Upload defs.zip Cnoose File No file chosen Upload Tecfile Cnoose File No file chosen Upload Flowtable Cnoose File No file chosen Upload Flowtable Cnoose File No file chosen Upload Simulation Start Date 1993 10 11 Intervention Calibration End Date 1995 10 11 Intervention m 0.01 100 Intervention	
clim.zip Choose File No file chosen Upload defs.zip Choose File No file chosen Upload Tecfile Choose File No file chosen Upload Flowtable Choose File No file chosen Upload Flowtable Surface Choose File No file chosen Upload Simulation Start Date 1990 11 1 Upload Calibration End Date 1995 10 1 1 Upload	
defs.zip Choose File No file chosen Upload Tecfile Choose File No file chosen Upload Flowtable Choose File No file chosen Upload Simulation Start Date 1993 10 1 1 Image: Choose File No file chosen Calibration End Date 1993 10 1 1 Image: Choose File No file chosen m 0.01 100 Image: Choose File No file chosen	
Teofile Choose File No file chosen Upload Flowtable Choose File No file chosen Upload Flowtable Surface Choose File No file chosen Upload Simulation Start Date 1990 1 1 1 1 Calibration Start Date 1995 10 1 1 1 m 0.01 100 100	
Tectile Choose File No file chosen Upbox Flowtable Choose File No file chosen Upbox Simulation Start Date 1990 1 1 1 Image: Choose File Calibration Start Date 1993 10 1 1 Image: Choose File m 0.01 100	
Flowtable Choose File No file chosen Upload Flowtable Surface Choose File No file chosen Upload Simulation Start Date 1990 1 1 1 Image: Choose File Image: Choose File Calibration Start Date 1993 10 1 1 Image: Choose File Image: Choose File M 0.01 100 Image: Choose File Image: Choose File	
Flowtable Surface Choose File No file chosen Uplead Simulation Start Date 1993 10 1 1 1 Calibration End Date 1995 10 1 1 1 m 0.01 100 1	
Simulation Start Date 1990 1 1 1 Calibration Start Date 1993 10 1 1 Calibration End Date 1995 10 1 1 m 0.01 100	
Calibration Start Date 1993 10 1 1 Calibration End Date 1995 10 1 1 m 0.01 100	
Calibration End Date 1995 10 1 1 1 0 0	
m 0.01 100 0	
m 0.01 100	
Ksat0 1 500 .	
Soil Depth 0.01 ?	
m Vertical 0.01 100	
Keath Vertinal 1 500	
Pore Size Index 0.5 2	
Psi Air Index 0.5 2	
Ground Water Bypass 0 1	

CYBERINTEGRATOR

Cyberintegrator Architecture

- Plugin based
- Executor types
 - Local (on local machine)
 - Remote (remote service)
- Example executors
 - Java (local)
 - Command Line (local)
 - HPC (remote)

Technologies Used

- JAVA
- Spring Framework, especially spring-data, well established, been around long time.
- Hibernate, used as ORM
 - Data is stored in MySQL (tested), but can be any relational database.

Local vs Remote Executors

- Local Executors
 - Run on same machine as Cyberintegrator
 - Cyberintegrator controls what executors is running
 - Limited number of parallel processes
- Remote Executors
 - Run on different machine
 - Process Management is done outside of Cyberintegrator
 - All executors are started if possible

JAVA Executor

- Local executor
- JAVA code is run in Cyberintegrator VM
- Need implementation of JAVA interface
 - setInput
 - setParameter
 - Execute
 - getOutput
- System.exit() is a bad call!

Java Wizard

- Add JAR files with tools
 - Including any additional jar files needed
- Select tools that needs to be imported
- Wizard will use interface to get
 - Name and description
 - Inputs and outputs
 - Parameters

Command Line Executor

- Local executor
- Execute command line tool
- Sets working folder to a temp folder
- Can capture stdout and stderr
- Will add copy of inputs in temp folder
 - Prevents modification
- Will copy outputs back to database

Command Line Wizard

- Point to executable
- What inputs, outputs are needed
- What parameters are needed
 - Flags, options etc.
- Any additional files needed
- Set environment variables

HPC Executor

- It is a RemoteExecutor that uses SSH Channels to communicate with various queuing systems
- Similar to Command Line Executor except the execution line (executable, flags, inputs, etc) for the tool are appended to a script and submitted to a queuing system
- An XML definition file must be provided to the tool with information about the HPC (e.g. location of submit, terminate, status commands), a script to append the execution line to, and the regex for parsing job status messages
- Queuing systems tested
 - PBS
 - Loadleveler
 - SGE (minimally tested)

HPC Tool

- A Wizard guides users through tool creation process
- User provides XML host definition file and executable
- The wizard allows user to specify program arguments and inputs that will be used to build the tool's User Interface
- Each HPC Tool requires the following information, which is added dynamically to the tool definition and will be part of the tool's UI
 - Username on target machine
 - Userhome on target machine
 - SSH URI for target machine

Cyberintegrator Applications

- Server Application
 - Exposes Cyberintegrator as restful service
 - Allows uploading/downloading workflows/data
 - Allows execution of workflows on server
- Workflow Editor
 - Web based
 - Work online/offline
 - Allows for creation/editing of workflows on server
- Tool creator
 - Temporary tool to allow creation of tools on server

Cyberintegrator Server

- Standard REST endpoint
 - Results are JSON
- Same engine/executors as Desktop
- Can execute workflows on demand
 - Workflows as a service!
- Can upload datasets for workflow
- Can specify parameters for workflow

Cyberintegrator REST

- People [GET, POST]
 - http://<host:port>/persons/{pid}
- Workflows [GET, POST]
 - http://<host:port>/workflows/{wid}/
 - http://<host:port>/workflows/{wid}/zip
 - http://<host:port>/workflows/{wid}/executions/{eid}
- LogFiles [GET]
 - http://<host:port>/logfiles/{lid}/
- Datasets [GET, POST]
 - http://<host:port>/datasets/{did}/
 - http://<host:port>/datasets/{did}/zip
 - http://<host:port>/datasets/{did}/{fid}
 - http://<host:port>/datasets/{did}/{fid}/zip

Workflow Editor

- Web based
- Create tools
- Create workflows
- Execute workflows
- View past executions
- Upload/download datasets/results

Workflow Editor

PAW

- Published Active Workflow
- Workflows can have many steps, many inputs and many parameters, not all should be exposed to user or as service.
- Allows single widget to control multiple parameters
- Associates UI widgets with parameters.

PAW Editor

- Web based (HTML5) tool for interactively publishing workflows. The tool allows you to:
 - Publisher can specify which workflow fields to expose to users
 - Guides user through process of mapping Web UI widgets (Text, Int, Float, Custom) to one or more exposed workflow fields
 - Add Metadata about workflow tools
- Review panel allows user to review/modify JSON before publishing

PAW Editor – Field Mapping

W Publish Hon	ne About Contact			
ine Published Wo	orkflow	Select Parameters	Input Configuration	
Title:	eAIRS-2D CFD	 eAIRS Results Username eAIRS Results HPC Log 	Title:	Target SSH
Author:	Chris Navarro - cmnavarr@ill •	eAIRS CFD Parameters Constraint_Option05 eAIRS CFD Parameters U_Inlet eAIRS CFD Parameters AOA02	Description:	Remote host SSH URI
Description:	eAIRS CFD simulation using various solvers.	eAIRS CFD Parameters DVL10 eAIRS CFD Parameters Target Time		
	6	eAIRS CFD Parameters AOA07 eAIRS CFD Parameters AOA03 eAIRS CFD Parameters DVL02 eAIRS CFD Parameters Intwrt	Parameters:	eAIRS Results Target SSH eAIRS-CFD-Tachyon-MPI T eAIRS File-Transfer Target
put Configurations:	Target SSH Flow Type Total Iteration	eAIRS CFD Parameters Moving wall velocity eAIRS CFD Parameters YU1 eAIRS CFD Parameters IBM Iteration	Hidden:	False
		eAIRS CFD Parameters DVUL03 eAIRS CFD Parameters Angle eAIRS CFD Parameters Angle	Widget Type:	Text
		eAIRS CFD Parameters AOA11 eAIRS CFD Parameters P_Out eAIRS CFD Parameters DVUL10	Default Value:	ssh://ranger.tacc.teragrid.org:22
	New Delete	eAIRS CFD Parameters XL1	V	Save
Metadata:	Mesh Visualizer			

PAW Editor – Review JSON

Getting Started with Cyberintegrator

- Download Cyberintegrator app
- Create tools
 - Use toolcreator for now
- Create workflow
- Execute workflow on server
- Check results

Future Work

- Finish Web based editor
 - Allow for tool creation
 - Add authentications (openID)
- Data integration with Medici
 - Right now data stored in filesystem
 - Data can be stored in Medici
- More executors for Cyberintegrator
 - MATLAB
 - R
- PAW editor
 - Allow selection of widgets
 - Publish PAW as a web application

Cyberintegrator FAQ

- Source Code
 - https://opensource.ncsa.illinois.edu/stash/projects/CBI
- Bugs
 - <u>https://opensource.ncsa.illinois.edu/jira/browse/CBI</u>
- Documentation
 - <u>https://opensource.ncsa.illinois.edu/confluence/display/CBI</u>
- Application Downloads
 - <u>http://isda.ncsa.illinois.edu/download/index.php?</u> project=Cyberintegrator&sort=version

Questions

- Feel free to contact us
- http://isda.ncsa.illinois.edu
- isda@ncsa.illinois.edu

Cyberintegrator Demo

- Software URLS:
 - https://opensource.ncsa.illinois.edu/bamboo/browse/CI-SERVER
 - Download latest build:
 - cyberintegrator-webapp-all.zip
 - cyberintegrator-tool-creator.zip
- Source URL:
 - https://opensource.ncsa.illinois.edu/stash/scm/~cnavarro/grepdemo.git

Cyberintegrator Start

- Unzip cyberintegrator-webapp-all.zip
- Launch bin/cyberintegrator-service
- Open webbrowser
 - http://localhost:8888/persons (Should return [])
- Unzip cyberintegrator-tool-creator.zip
- Launch bin/tool-creator

Create First Tool

- Add Person
- Add Command-Line tool
 - netstat
 - Executable is netstat
 - Capture stdout
 - Add parameter
 - Name is options
 - Default value is -an
 - Can be empty

Create Second Tool

- Build in eclipse
 - Clone git repository
 - <u>https://opensource.ncsa.illinois.edu/stash/scm/~cnavarro/grep-demo.git</u>
 - Import projects
 - Run->As Maven package
- Build in command line
 - git clone https://opensource.ncsa.illinois.edu/stash/scm/ ~cnavarro/grep-demo.git
 - cd grep-demo/grep-tool
 - mvn package

Add Second Tool

- Add Java tool
 - Add files point to target/grep-tool-example-0.0.1-SNAPSHOT.jar
 - Select GrepTool

Create Workflow

- In browser go to http://localhost:8888/editor
 - Login is email address of user created
 - Password can be blank (for now)
 - Editor should show 2 tools
 - Create new workflow
 - Either plus under workflows or on tab page
 - (known bug of invalid first workflow page CBI-468)
 - Drag netstat and grep on canvas
 - Connect stdout of netstat to input file of grep
 - Save workflow
 - <u>http://localhost:8888/workflows</u>

Execute Workflow

- Click on Execute
- Open workflow just created
- Fill in workflow
 - Title, description
 - Options = -an
 - Regex = .*LISTEN.*

Workflow History

- Click on History
- Select on execution just created
 - See how long a step took (milliseconds)
 - Download results

