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Content-Based Comparison 

• Goal: Comparing digital data 
• Given two or more digital objects establish their proximity 
• Arbitrary? 
• Not really, comparing two files, videos, documents, etc. 

has many applications, for example: 



Some Applications 

• Information loss 
• Information loss when applying file format conversion 
• Polyglot 

• Content-based retrieval 
• Given a multimedia file (image) find the closest ones in a large 

collection 

• Find duplicates 
• Across formats 



Census Information Retrieval 

Query: Collection: 



History 

• Funding by National Archives and Records 
Administration (NARA)  

• Research and development started in 2010 
• Originally focused on pairwise comparison 
• Adding support for the creation of indexes over past two 

years 
• Current version is 0.6 

• Usable but still in flux 
• Particular important with APIs 
• Lots of exploratory work over the years 

 



Two Main Components 

Core 
• A set of Java interfaces 
• Multithreaded Execution 

Engine 
• Registry to register and 

query for methods 

Web Service 
• HTTP API wrapping Core 
• Master/slave architecture 



Several Clients 

• Command Line Interface 
• Web Application 
• Desktop App 
• Medici 2 



Why would one use Versus instead of 
writing specific implementations as need 
be? 
• Reuse existing methods 
• Share methods with community 
• Organize code in clear components 
• Leverage execution environment and service 

infrastructure 



Pairwise Comparison API 
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Indexing API 
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Service Demo 

• http://isda.ncsa.illinois.edu/documentation/versus/tutorial
  

http://isda.ncsa.illinois.edu/documentation/versus/tutorial


Master/Slave 
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Demo: Master/Slave configuration 

• Starting and stopping slaves 



Storage 

• Different implementations of persistence layer available 
• In memory 
• File system 
• Mysql 
• MongoDB 

 
 



Adding Implementations 

• Write Java Code 
• Can execute arbitrary code using  

• Runtime.getRuntime().exec(args) 
• JNI 

• Register them using Java services 
• Add fully qualified class name to respective service file 
• For example add 
• edu.illinois.ncsa.versus.extract.impl.RGBHistogramExtractor 
• To 
• /META-INF/services/edu.illinois.ncsa.versus.extract.Extractor 
• Restart 



Demo: Deploying new methods 

 



Demo: Medici as a client 

 



Future Work 

• Store intermediate data structures to disk 
• Caching between overlapping comparisons 

• Service Reliability 
• Recovering if a node goes down 

• Split steps across nodes 
• Ability to execute extractions and calculate measures on different 

nodes  
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