
National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign

Versus Framework

Luigi Marini

December 13th, 2013

Content-Based Comparison

• Goal: Comparing digital data
• Given two or more digital objects establish their proximity
• Arbitrary?
• Not really, comparing two files, videos, documents, etc.

has many applications, for example:

Some Applications

• Information loss
• Information loss when applying file format conversion
• Polyglot

• Content-based retrieval
• Given a multimedia file (image) find the closest ones in a large

collection

• Find duplicates
• Across formats

Census Information Retrieval

Query: Collection:

History

• Funding by National Archives and Records
Administration (NARA)

• Research and development started in 2010
• Originally focused on pairwise comparison
• Adding support for the creation of indexes over past two

years
• Current version is 0.6

• Usable but still in flux
• Particular important with APIs
• Lots of exploratory work over the years

Two Main Components

Core
• A set of Java interfaces
• Multithreaded Execution

Engine
• Registry to register and

query for methods

Web Service
• HTTP API wrapping Core
• Master/slave architecture

Several Clients

• Command Line Interface
• Web Application
• Desktop App
• Medici 2

Why would one use Versus instead of
writing specific implementations as need
be?
• Reuse existing methods
• Share methods with community
• Organize code in clear components
• Leverage execution environment and service

infrastructure

Pairwise Comparison API

Digital
Object

Ad
ap

te
r

Extractor

Digital
Object

Ad
ap

te
r

Extractor

M
ea

su
re

Feature

Feature

Proximity

Indexing API

Index

Index

Digital
Object

Ad
ap

te
r

Extractor Feature

Query Query
Object

Ad
ap

te
r

Extractor Feature

Service Demo

• http://isda.ncsa.illinois.edu/documentation/versus/tutorial

http://isda.ncsa.illinois.edu/documentation/versus/tutorial

Master/Slave

Master

Slave 1

Color
Histogram

Slave 2

GPU Color

Slave 3

3D Light
Fields

Slave N

Method N

Demo: Master/Slave configuration

• Starting and stopping slaves

Storage

• Different implementations of persistence layer available
• In memory
• File system
• Mysql
• MongoDB

Adding Implementations

• Write Java Code
• Can execute arbitrary code using

• Runtime.getRuntime().exec(args)
• JNI

• Register them using Java services
• Add fully qualified class name to respective service file
• For example add
• edu.illinois.ncsa.versus.extract.impl.RGBHistogramExtractor
• To
• /META-INF/services/edu.illinois.ncsa.versus.extract.Extractor
• Restart

Demo: Deploying new methods

Demo: Medici as a client

Future Work

• Store intermediate data structures to disk
• Caching between overlapping comparisons

• Service Reliability
• Recovering if a node goes down

• Split steps across nodes
• Ability to execute extractions and calculate measures on different

nodes

	Versus Framework��
	Content-Based Comparison
	Some Applications
	Census Information Retrieval
	History
	Two Main Components
	Several Clients
	Why would one use Versus instead of writing specific implementations as need be?
	Pairwise Comparison API
	Indexing API
	Service Demo
	Master/Slave
	Demo: Master/Slave configuration
	Storage
	Adding Implementations
	Demo: Deploying new methods
	Demo: Medici as a client
	Future Work

